2020, Number 1
Common characteristics of small dimeric chaperones
Language: Spanish
References: 90
Page: 1-13
PDF size: 489.36 Kb.
ABSTRACT
Molecular chaperones constitute an important mechanism to prevent cell death caused by protein aggregation. ATPindependent chaperones are a group of low molecular weight proteins that can protect or restore the native structure of unfolded or mis-folded proteins without expenditure of energy. Because we recently found that the C-terminal domain of large-size subunit catalases has a chaperone activity, we are reviewing common characteristics of the most studied low molecular size chaperones, such as αB-crystalline, Hsp20, Spy, Hsp33 and Hsp31. We particularly examine the participation of hydrophobic and charged amino acid residues in protein substrate recognition and the role of dimer formation and its oligomerization in the molecular chaperone activity. We review for each of these molecular chaperones its protein structure, its cellular function and localization, and its importance for the cell.REFERENCES
Akhtar, M. W., Srinivas, V., Raman, B., Ramakrishna, T., Inobe, T., Maki, K., Arai, M., Kuwajima, K. & Rao, C. M. (2004). Oligomeric Hsp33 with enhanced chaperone activity: gel filtration, cross-linking, and small angle x-ray scattering (SAXS) analysis. Journal of Biological Chemistry, 279(53), 55760–55769. DOI: 10.1074/jbc.M406333200
Alvarez-Castelao, B., Muñoz, C., Sánchez, I., Goethals, M., Vandekerckhove, J. & Castaño, J. G. (2012). Reduced protein stability of human DJ-1/PARK7 L166P, linked to autosomal recessive Parkinson disease, is due to direct endoproteolytic cleavage by the proteasome. Biochimica et Biophysica Acta, 1823(2), 524–533. DOI: 10.1016/j. bbamcr.2011.11.010
Bankapalli, K., Saladi, S., Awadia, S. S., Goswami, A. V., Samaddar, M. & D’Silva, P. (2015). Robust glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI family member protein, is critical for oxidative stress resistance in Saccharomyces cerevisiae. Journal of Biological Chemistry, 290(44), 26491–26507. DOI: 10.1074/jbc.M115.673624
Blackinton, J., Ahmad, R., Miller, D. W., van der Brug, M. P., Canet-Avilés, R. M., Hague, S. M., Kaleem, M. & Cookson, M. R. (2005). Effects of DJ-1 mutations and polymorphisms on protein stability and subcellular localization. Molecular Brain Research, 134(1), 76–83. DOI: 10.1016/j.molbrainres.2004.09.004
Braun, N., Zacharias, M., Peschek, J., Kastenmueller, A., Zou, J., Hanzlik, M., Haslbeck, M., Rappsilber, J., Buchner, J. & Weinkauf, S. (2011). Multiple molecular architectures of the eye lens chaperone alpha beta-crystallin elucidated by a triple hybrid approach. Proceedings of the National Academia of Sciences of the United Estates of America, 108(51), 20491–20496. DOI: 10.1073/pnas.1111014108
Brodehl, A., Gaertner-Rommel, A., Klauke, B., Grewe, S. A., Schirmer, I., Peterschröder, A., Faber, L., Vorgerd, M., Gummert, J., Anselmetti, D., Schulz, U., Paluszkiewicz, L. & Milting, H. (2017). The novel aB-crystallin (CRYAB) mutation p.D109G causes restrictive cardiomyopathy. Human Mutation, 38(8), 947–952. DOI: 10.1002/ humu.23248
den Engelsman, J., Bennink, E., Doerwald, L., Onnekink, C., Wunderink, L., Andley, U. P., Kato, K., de Jong, W. W. & Boeleens, W. C. (2004). Mimicking phosphorylation of the small heat-shock protein aB-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles. European Journal of Biochemistry, 271(21), 4195–4203. DOI: 10.1111/j.1432- 1033.2004.04359.x
Janda, I., Devedjiev, Y., Derewenda, U., Dauter, Z., Bielnicki, J., Cooper, D. R., Graf, P. C., Joachimiak, A., Jakob, U. & Derewenda, Z. S. (2004). The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism. Structure, 12(10), 1901–1907. DOI: 10.1016/j.str.2004.08.003
Kriegenburg, F., Jakopec, V., Poulsen, E. G., Nielsen, S. V., Roguev, A., Krogan, N., Gordon, C., Fleig, U. & Hartmann- Petersen, R. (2014). A chaperone-assisted degradation pathway targets kinetochore proteins to ensure genome stability. PLoS Genetics, 10(1), e1004140- e1004140. DOI: 10.1371/journal.pgen.1004140
Lee, S-J., Kim, S. J., Kim, I-K., Ko, J., Jeong, C-S., Kim, G-H., Park, C., Kang, S-O., Suh, P-G., Lee, H-L. & Cha, S-S. (2003). Crystal structures of human DJ‐1 and Escherichia coli Hsp31 that share an evolutionarily conserved domain. Journal of Biological Chemistry, 278(45), 44552–44559. DOI: 10.1074/jbc.M304517200
Miller-Fleming, L., Antas, P., Pais, T. F., Smalley, J. L., Giorgini, F. & Outeiro, T. F. (2014). Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase. Proceedings of the National Academia of Sciences of the United Estates of America, 111(19), 7012–7017. DOI: 10.1073/ pnas.1319221111
Moutaoufik, M. T., Malty, R, Amin S., Zhang Q., Phanse S., Gagarinova A., Zilocchi M., Hoell L., Minic Z., Gagarinova M., Aoki H., Stockwell J., Jessulat M., Goebels F., Broderick K., Scott N. E., Vlasblom J., Musso G., Prasad B, Lamantea E., Garavaglia B., Rajput A., Murayama K., Okazaki Y., Foster L. J., Bader G. D., Cayabyab F. S. & Babu M. (2019). Rewiring of the human mitochondrial interactome during neuronal reprogramming reveals regulators of the respirasome and neurogenesis. ISciences, 19(27), 1114–1132. DOI: 10.1016/j.isci.2019.08.057
Mujacic, M., Bader, M. W. & Baneyx, F. (2004). Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK‐DnaJ‐GrpE system in the management of protein misfolding under severe stress conditions. Molecular Microbiology, 51(3), 849– 859. DOI: 10.1046/j.1365- 2958.2003.03871.x
Quan, S., Koldewey, P., Tapley, T., Kirsch, N., Ruane, K. M., Pfizenmaier, J., Shi, R., Hofmann, S., Foit, L., Ren, G., Jakob, U., Xu, Z., C., Ygler, M. & Bardwell, J. C. (2011). Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nature Structural and Molecular Biology, 18(1), 262–269. DOI: 10.1038/nsmb.2016
Quigley, P. M., Korotkov, K., Baneyx, F. & Hol, W. G. J. (2003). The 1.6‐Å crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad. Proceedings of the National Academia of Sciences of the United Estates of America, 100(6), 3137–3142. DOI: 10.1073/pnas.0530312100
Sastry, M. S., Quigley, P. M., Hol, W. G. & Baneyx, F. (2004). The linker-loop region of Escherichia coli chaperone Hsp31 functions as a gate that modulates high-affinity substrate binding at elevated temperatures. Proceedings of the National Academia of Sciences of the United Estates of America, 101(23), 8587–8592. DOI: 10.1073/ pnas.0403033101