2020, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2020; 23 (1)
Características comunes de las chaperonas pequeñas y diméricas
Nava RT, Hansberg W
Idioma: Español
Referencias bibliográficas: 90
Paginas: 1-13
Archivo PDF: 489.36 Kb.
RESUMEN
Las chaperonas moleculares constituyen un mecanismo importante para evitar la muerte celular provocada por la
agregación de proteínas. Las chaperonas independientes del ATP son un grupo de proteínas de bajo peso molecular que
pueden proteger y ayudar a alcanzar la estructura nativa de las proteínas desplegadas o mal plegadas sin necesidad de
un gasto energético. Hemos encontrado que el dominio C-terminal de las catalasas de subunidad grande tiene actividad
de chaperona. Por ello, en esta revisión analizamos las características más comunes de las chaperonas pequeñas y más
estudiadas como: αB-cristalina, Hsp20, Spy, Hsp33 y Hsp31. En particular, se examina la participación de los aminoácidos
hidrofóbicos y de los aminoácidos con carga en el reconocimiento de las proteínas sustrato, así como el papel que tiene
la forma dimérica y su oligomerización en la actividad de chaperona. En cada una de esas chaperonas revisaremos la
estructura de la proteína, su función, localización celular e importancia para la célula.
REFERENCIAS (EN ESTE ARTÍCULO)
Akhtar, M. W., Srinivas, V., Raman, B., Ramakrishna, T., Inobe, T., Maki, K., Arai, M., Kuwajima, K. & Rao, C. M. (2004). Oligomeric Hsp33 with enhanced chaperone activity: gel filtration, cross-linking, and small angle x-ray scattering (SAXS) analysis. Journal of Biological Chemistry, 279(53), 55760–55769. DOI: 10.1074/jbc.M406333200
Alvarez-Castelao, B., Muñoz, C., Sánchez, I., Goethals, M., Vandekerckhove, J. & Castaño, J. G. (2012). Reduced protein stability of human DJ-1/PARK7 L166P, linked to autosomal recessive Parkinson disease, is due to direct endoproteolytic cleavage by the proteasome. Biochimica et Biophysica Acta, 1823(2), 524–533. DOI: 10.1016/j. bbamcr.2011.11.010
Aslam, K. & Hazbun, T. R. (2016). Hsp31, a member of the DJ-1 superfamily, is a multitasking stress responder with chaperone activity. Prion, 10(2), 103–111. DOI: 10.1080/19336896.2016.1141858
Bagnéris, C., Bateman, O., Naylor, C., Cronin, N., Boelens, W., Keep, N. & Slingsby, C. (2009). Crystal structures of a-crystallin domain dimers of aB-crystallin and Hsp20. Journal of Molecular Biology, 394(3), 1242-1252. DOI: 10.1016/j.jmb.2009.09.060
Bankapalli, K., Saladi, S., Awadia, S. S., Goswami, A. V., Samaddar, M. & D’Silva, P. (2015). Robust glyoxalase activity of Hsp31, a ThiJ/DJ-1/PfpI family member protein, is critical for oxidative stress resistance in Saccharomyces cerevisiae. Journal of Biological Chemistry, 290(44), 26491–26507. DOI: 10.1074/jbc.M115.673624
Blackinton, J., Ahmad, R., Miller, D. W., van der Brug, M. P., Canet-Avilés, R. M., Hague, S. M., Kaleem, M. & Cookson, M. R. (2005). Effects of DJ-1 mutations and polymorphisms on protein stability and subcellular localization. Molecular Brain Research, 134(1), 76–83. DOI: 10.1016/j.molbrainres.2004.09.004
Boelens, W. (2014). Cell biological roles of aB-crystallin. Progress in Biophysics and Molecular Biology, 115(1), 3–10. DOI: 10.1016/j.pbiomolbio.2014.02.005
Braun, N., Zacharias, M., Peschek, J., Kastenmueller, A., Zou, J., Hanzlik, M., Haslbeck, M., Rappsilber, J., Buchner, J. & Weinkauf, S. (2011). Multiple molecular architectures of the eye lens chaperone alpha beta-crystallin elucidated by a triple hybrid approach. Proceedings of the National Academia of Sciences of the United Estates of America, 108(51), 20491–20496. DOI: 10.1073/pnas.1111014108
Brodehl, A., Gaertner-Rommel, A., Klauke, B., Grewe, S. A., Schirmer, I., Peterschröder, A., Faber, L., Vorgerd, M., Gummert, J., Anselmetti, D., Schulz, U., Paluszkiewicz, L. & Milting, H. (2017). The novel aB-crystallin (CRYAB) mutation p.D109G causes restrictive cardiomyopathy. Human Mutation, 38(8), 947–952. DOI: 10.1002/ humu.23248
Bukach, O. V., Seit-Nebi, A. S., Marston, S. B. & Gusev, N. B. (2004). Some properties of human small heat shock protein Hsp20 (HspB6). European Journal of Biochemistry, 271(2), 291–302. DOI: 10.1046/j.1432-1033.2003.03928.x
Chelikani, P., Donald, L. J., Duckworth, H. W. & Loewen, P. C. (2003). Hydroperoxidase II of Escherichia coli exhibits enhanced resistance to proteolytic cleavage compared to other catalases. Biochemistry, 42(19), 5729–5735. DOI: 10.1021/bi034208j
Chi, S. W., Jeong, D. G., Woo, J. R., Lee, H. S., Park, B. C., Kim., B. Y., Erikson, R. L., Ryu, S. E. & Kim, S. J. (2011). Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity. FEBS Letters, 585(4), 664- 670. DOI: 10.1016/j.febslet.2011.01.029
Cremers, C. M., Reichmann, D., Hausmann, J., Ilbert, M. & Jacob, U. (2010). Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone. Journal of Biological Chemistry, 285(15), 11243–11251. DOI: 10.1074/jbc.M109.084350
den Engelsman, J., Bennink, E., Doerwald, L., Onnekink, C., Wunderink, L., Andley, U. P., Kato, K., de Jong, W. W. & Boeleens, W. C. (2004). Mimicking phosphorylation of the small heat-shock protein aB-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles. European Journal of Biochemistry, 271(21), 4195–4203. DOI: 10.1111/j.1432- 1033.2004.04359.x
Díaz, A., Valdés, V. J., Rudiño-Piñera, E., Horjales, E. & Hansberg, W. (2009). Structure-function relationships in fungal large-subunit catalases. Journal of Molecular Biology, 386(1), 218–232. DOI: 10.1016/j. jmb.2008.12.019
Dimauro, I., Antonioni, A., Mercatelli, N. & Caporossi, D. (2017). The role of aB-crystallin in skeletal and cardiac muscle tissues. Cell Stress and Chaperones, 23(4), 491–505. DOI: 10.1007/s12192-017-0866-x
Dolgacheva, L. P., Berezhnov, A. V., Fedotova, E. I., Zinchenko, V. P. & Abramov, A. Y. (2019). Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. Journal of Bioenergetics and Biomembranes, 51(3), 175–188. DOI: 10.1007/s10863-019-09798-4
Dreiza, C. M., Komalavilas, P., Furnish, E. J., Flynn, C. R., Sheller, M., Smoke, C. C., Lopes, L. B. & Brophy, C. M. (2010). The small heat shock protein, HSPB6, in muscle function and disease. Cell Stress and Chaperones, 15(1), 1–11. DOI: 10.1007/s12192-009-0127-8
Edwards, H. V., Cameron, R. T. & Baillie, G. S. (2011). The emerging role of HSP20 as a multifunctional protective agent. Cell Signalling, 23(9), 1447–1454. DOI: 10.1016/j. cellsig.2011.05.009
Fan, G. C. & Kranias, E. (2010). Small heat shock protein 20 (HspB6) in cardiac hypertrophy and failure. Journal of Molecular and Cellular Cardiology, 51(4), 574–577. DOI: 10.1016/j.yjmcc.2010.09.013
Fuchs, M., Poirier, D. J., Seguin, S. J., Lambert, H., Carra, S., Charette, S. J. & Landry, J. (2009). Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction. Biochemical Journal, 425(1), 245–255. DOI: 10.1042/BJ20090907
Golenhofen, N., Perng, M. D., Quinlan, R. A. & Drenckhahn, D. (2004). Comparison of small heat shock proteins alphaBcrystallin, MKBP, HSP25, HSP20, cvHSP in heart and skeletal muscle. Histochemistry and Cell Biology, 122(5), 415–425. DOI: 10.1007/s00418-004-0711-z
Graumann, J., Lilie, H., Tang, X., Tucker, K. A., Hoffmann, J. H., Vijayalakshmi, J., Saper, M., Bardwell, J. C. & Jakob, U. (2001). Activation of the redox-regulated molecular chaperone Hsp33 — A two-step mechanism. Structure, 9(5), 377–387. DOI: 10.1016/s0969-2126(01)00599-8
Groitl, B., Horowitz, S., Makepeace, K. A. T., Petrotchenko, E. V., Borchers, C. H., Reichmann, D., Bardwell, J. C. A. & Jacob, U. (2016). Protein unfolding as a switch from self-recognition to high-affinity client binding. Nature Communications, 7(1), 1-12. DOI: 10.1038/ ncomms10357
Gruvberger-Saal, S. & Parsons, R. (2006). Is the small heat shock protein aB-crystallin an oncogene? The Journal of Clinical Investigation, 116(1), 30–32. DOI: 10.1172/JCI27462
Hall, D. (2019). On the nature of the optimal form of the holdase‐type chaperone stress response. FEBS Letters, 594(1), 43–66. DOI: 10.1002/1873-3468.13580
Hansberg, W., Salas-Lizana, R. & Domínguez, L. (2012). Fungal catalases: function, phylogenetic origin and structure. Archives of Biochemistry and Biophysics, 525(2), 170–180. DOI: 10.1016/j.abb.2012.05.014
Hartl, F. U., Bracher, A. & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 575(7356), 324–332. DOI: 10.1038/nature10317
Hartl, F. U. & Hayer-Hartl, M. (2009). Converging concepts of protein folding in vitro and in vivo. Nature Structural and Molecular Biology, 16(6), 574–581. DOI: 10.1038/ nsmb.1591
He, L., Sharpe, T., Mazur, A. & Hiller, S. (2016). A molecular mechanism of chaperone-client recognition. Science Advances, 2(11), e1601625-e1601629. DOI: 10.1126/ sciadv.1601625
Heirbaut, M., Beelen, S., Strelkov, S. V. & Weeks, S. D. (2014). Dissecting the functional role of the N-terminal domain of the human small heat shock protein HSPB6. PLoS One, 9(8), e105892- e105892. DOI: 10.1371/journal.pone.0105892
Hiller, S. & Burmann, B. M. (2018). Chaperone–client complexes: a dynamic liaison. Journal of Magnetic Resonance, 289(1), 142–155. DOI: 10.1016/j.jmr.2017.12.008
Honbou, K., Suzuki, N. N., Horiuchi, M., Niki, T., Taira, T., Ariga, H. & Inagaki, F. (2003). The Crystal structure of DJ-1, a protein related to male fertility and Parkinson’s disease. Journal of Biological Chemistry, 278(33), 31380–31384. DOI: 10.1074/jbc.M305878200
Janda, I., Devedjiev, Y., Derewenda, U., Dauter, Z., Bielnicki, J., Cooper, D. R., Graf, P. C., Joachimiak, A., Jakob, U. & Derewenda, Z. S. (2004). The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism. Structure, 12(10), 1901–1907. DOI: 10.1016/j.str.2004.08.003
Jaspard, E. & Hunault, G. (2016). sHSPdb: A database for the analysis of small Heat Shock Proteins. BCM Plant Biology, 16(1), 135-146. DOI: 10.1186/s12870-016-0820-6
Jin, J., Whittaker, R., Glassy, M., Barlow, S., Gottlieb, R. & Glembotski, C. (2008). Localization of phosphorylated aB-crystallin to heart mitochondria during ischemiareperfusion. American Journal of Physiology-Heart and Circulatory Physiology, 294(1), H337–H344. DOI: 10.1152/ajpheart.00881.200
Jung, H. J., Kim, S., Kim, Y. J., Kim, M-K., Kang, S. G., Lee, J-H., Kim, W. & Cha, S-S. (2012). Dissection of the dimerization modes in the DJ-1 superfamily. Molecules and Cells, 33(2), 163–171. DOI: 10.1007/s10059-012-2220-6
Kim, J., Choi, D., Cha, S. Y., Oh, Y. M., Hwang, E., Park, C. & Ryu, K. S. (2018). Zinc-mediated reversible multimerization of Hsp31 enhances the activity of holding chaperone. Journal of Molecular Biology, 430(12), 1760–1772. DOI: 10.1016/j.jmb.2018.04.029
Kim, K. S., Kim, J. S., Park, J-Y., Suh, Y. H., Jou, I., Joe, E. H. & Park, S. M. (2013). DJ-1 associates with lipid rafts by palmitoylation and regulates lipid rafts-dependent endocytosis in astrocytes. Human Molecular Genetics, 22(23), 4805–4817. DOI: 10.1093/hmg/ddt332
Kim, S-J., Park, Y-J., Hwang, I-Y., Youdim, M. B. H., Park, K. S. & Oh, Y. J. (2012). Nuclear translocation of DJ-1 during oxidative stress-induced neuronal cell death. Free Radical Biology & Medicine, 53(4), 936–950. DOI: 10.1016/j. freeradbiomed.2012.05.035
Klemenz, R., Andres, A., Fröhli, E., Schäfer, R. & Aoyama, A. (1993). Expression of the murine small heat shock proteins HSP25 and alpha B crystallin in the absence of stress. Journal of Cell Biology, 120(3), 639–645. DOI: 10.1083/jcb.120.3.639
Koldewey, P., Horowitz, S. & Bardwell, J. (2017). Chaperone-client interactions: Non-specificity engenders multifunctionality. Journal of Biological Chemistry, 292(29), 12010–12017. DOI: 10.1074/jbc.R117.796862
Koldewey, P., Stull, F., Horowitz, S., Martin, R. & Bardwell, J. (2016). Forces driving chaperone action. Cell, 166(2), 369–379. DOI: 10.1016/j.cell.2016.05.054
Kriegenburg, F., Jakopec, V., Poulsen, E. G., Nielsen, S. V., Roguev, A., Krogan, N., Gordon, C., Fleig, U. & Hartmann- Petersen, R. (2014). A chaperone-assisted degradation pathway targets kinetochore proteins to ensure genome stability. PLoS Genetics, 10(1), e1004140- e1004140. DOI: 10.1371/journal.pgen.1004140
Kumsta, C. & Jakob, U. (2009). Redox-regulated chaperones. Biochemistry, 48(22), 4666–4676.DOI: 10.1021/bi9003556
Kwon, E., Kim, D. Y., Gross, C. A., Gross, J. D. & Kim, K. K. (2010). The crystal structure Escherichia coli Spy. Protein Sciencies, 19(11), 2252–2259. DOI: 10.1002/pro.489
Lee, S-J., Kim, S. J., Kim, I-K., Ko, J., Jeong, C-S., Kim, G-H., Park, C., Kang, S-O., Suh, P-G., Lee, H-L. & Cha, S-S. (2003). Crystal structures of human DJ‐1 and Escherichia coli Hsp31 that share an evolutionarily conserved domain. Journal of Biological Chemistry, 278(45), 44552–44559. DOI: 10.1074/jbc.M304517200
Li, F., Xiao, H., Zhou, F., Hu, Z. & Yang, B. (2017). Study of HspB6: insights into the properties of multifunctional protective agent. Cell Physiology and Biochemistry, 44(1), 314–332. DOI: 10.1159/000484889
Liu, Z., Wang, C., Li, Y., Zhao, C., Li, T., Li, D., Zhang, S. & Liu, C. (2018). Mechanistic insights into the switch of aB-crystallin chaperone activity and self-multimerization. Journal of Biological Chemistry, 293(38), 14880–14890. DOI: 10.1074/jbc.ra118.004034
Lucas, J. I. & Marín, I. (2007). A new evolutionary paradigm for the Parkinson disease gene DJ-1. Molecular Biology and Evolution, 24(2), 551–556. DOI: 10.1093/molbev/ msl186
Macario, A., Conway de Macario, E. & Cappello, F. (2013). Chaperones: general characteristics and classifications. In The Chaperonopathies pp. 15–33. SpringerBriefs in Biochemistry and Molecular Biology, Springer, Dordrecht. DOI: 10.1007/978-94-007-4667-1_2%0A
Malki, A., Kern, R., Abdallah, J. & Richarme, G. (2003). Characterization of the Escherichia coli YedU protein as a molecular chaperone. Biochemical and Biophysical Research Communications, 301(2), 430–436.DOI: 10.1016/ s0006-291x(02)03053-x
Merdanovic, M., Clausen, T., Kaiser, M., Huber, R. & Ehrmann, M. (2004). Protein quality control in the bacterial periplasm. Annual Review of Microbiology, 65(1), 149–168. DOI: 10.1146/annurev-micro-090110-102925
Miller-Fleming, L., Antas, P., Pais, T. F., Smalley, J. L., Giorgini, F. & Outeiro, T. F. (2014). Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase. Proceedings of the National Academia of Sciences of the United Estates of America, 111(19), 7012–7017. DOI: 10.1073/ pnas.1319221111
Morimoto, R. (2002). Dynamic remodeling of transcription complexes by molecular chaperones. Cell, 110(3), P281- 284. DOI: 10.1016/S0092-8674(02)00860-7
Moutaoufik, M. T., Malty, R, Amin S., Zhang Q., Phanse S., Gagarinova A., Zilocchi M., Hoell L., Minic Z., Gagarinova M., Aoki H., Stockwell J., Jessulat M., Goebels F., Broderick K., Scott N. E., Vlasblom J., Musso G., Prasad B, Lamantea E., Garavaglia B., Rajput A., Murayama K., Okazaki Y., Foster L. J., Bader G. D., Cayabyab F. S. & Babu M. (2019). Rewiring of the human mitochondrial interactome during neuronal reprogramming reveals regulators of the respirasome and neurogenesis. ISciences, 19(27), 1114–1132. DOI: 10.1016/j.isci.2019.08.057
Mujacic, M., Bader, M. W. & Baneyx, F. (2004). Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK‐DnaJ‐GrpE system in the management of protein misfolding under severe stress conditions. Molecular Microbiology, 51(3), 849– 859. DOI: 10.1046/j.1365- 2958.2003.03871.x
Mujacic, M. & Baneyx, F. (2006). Regulation of Escherichia coli hchA, a stress‐inducible gene encoding molecular chaperone Hsp31. Molecular Microbiology, 60(6), 1576–1589. DOI: 10.1111/j.1365-2958.2006.05207.x
Muranova, L. & Gusev, N. S. (2018). aB-crystallin phosphorylation: advances and problems. Biochemistry (Moscow), 83(10), 1196–1206. DOI: 10.1146/annurevmicro- 090110-102925.
Mymrikov, E. V., Riedl, M., Peters, C., Weinkauf, S., Haslbeck, M. & Buchner, J. (2019). Regulation of small heat shock proteins by hetero-oligomer formation. Journal of Biological Chemistry, 295(1), 158-169. DOI: 10.1074/jbc. RA119.011143
Nava Ramírez, T. (2017). Las catalasas de subunidad grande también son chaperonas. Tesis de Maestría, UNAM. 1-84
Nava Ramírez, T. & Hansberg, W. (2020).Chaperone activity of large-size subunit catalases. Free Radical Biology & Medicine, 156, 99–106. DOI: 10.1016/j. freeradbiomed.2020.05.020
Niwa, M., Kozawa, O., Matsuno, H., Kato, K. & Uematsu, T. (2000). Small molecular weight heat shock-related protein, HSP20, exhibits an anti-platelet activity by inhibiting receptor-mediated calcium influx. Life Sciences, 66(1), PL7-12. DOI: 10.1016/s0024-3205(99)00566-4
Quan, S., Koldewey, P., Tapley, T., Kirsch, N., Ruane, K. M., Pfizenmaier, J., Shi, R., Hofmann, S., Foit, L., Ren, G., Jakob, U., Xu, Z., C., Ygler, M. & Bardwell, J. C. (2011). Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nature Structural and Molecular Biology, 18(1), 262–269. DOI: 10.1038/nsmb.2016
Quigley, P. M., Korotkov, K., Baneyx, F. & Hol, W. G. (2004). A new native EcHsp31 structure suggests a key role of structural flexibility for chaperone function. Protein Sciencies, 13(1), 269– 277. DOI: 10.1110/ps.03399604
Quigley, P. M., Korotkov, K., Baneyx, F. & Hol, W. G. J. (2003). The 1.6‐Å crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad. Proceedings of the National Academia of Sciences of the United Estates of America, 100(6), 3137–3142. DOI: 10.1073/pnas.0530312100
Reichmann, D., Xu, Y., Cremers, C. M., Ilbert, M., Mittelman, R., Fitzgerald, M. C. & Jakob, U. (2012). Order out of disorder: working cycle of an intrinsically unfolded chaperone. Cell, 148(5), 947–957. DOI: 10.1016/j.cell.2012.01.045
Rembold, C. M. & Zhang, E. (2001). Localization of heat shock protein 20 in swine carotid artery. BCM Physiology, 1(20), 1-5. DOI: 10.1186/1472-6793-1-10
Saio, T., Kawagoe, S., Ishimori, K. & Kalodimos, C. (2018). Oligomerization of a molecular chaperone modulates its activity. ELife, 7(e35731). 1-18. DOI: 10.7554/ eLife.35731
Santhanagopalan, I., Degiacomi, M., Shepherd, D., Hochberg, G., Benesch, J. & Vierling, E. (2018). It takes a dimer to tango: oligomeric small heat shock proteins dissociate to capture substrate. Journal of Biological Chemistry, 293(51), 19511–19521. DOI: 10.1074/jbc.RA118.005421
Sastry, M. S., Korotkov, K., Brodsky, Y. & Baneyx, F. (2002). Hsp31, the Escherichia coli yedU gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperatures. Journal of Biological Chemistry, 277(48), 46026-46034. DOI: 10.1074/jbc.M205800200
Sastry, M. S., Quigley, P. M., Hol, W. G. & Baneyx, F. (2004). The linker-loop region of Escherichia coli chaperone Hsp31 functions as a gate that modulates high-affinity substrate binding at elevated temperatures. Proceedings of the National Academia of Sciences of the United Estates of America, 101(23), 8587–8592. DOI: 10.1073/ pnas.0403033101
Segal, N. & Shapira, M. (2015). HSP33 in eukaryotes - an evolutionary tale of a chaperone adapted to photosynthetic organisms. The Plant Journal, 82(5), 850–860. DOI: 10.1111/tpj.12855
Seit-Nebi, A. S. & Gusev, N. B. (2009). Versatility of the small heat shock protein HSPB6 (Hsp20). Cell Stress and Chaperones, 15(3), 233–236. DOI: 10.1007/s12192-009- 0141-x
Skoneczna, A., Kaniak, A. & Skoneczny, M. (2015). Genetic instability in budding and fission yeast-sources and mechanisms. FEMS Microbiology Review, 39(6), 917–967. DOI: 10.1093/femsre/fuv028
Sluchanko, N. N., Beelen, S., Kulikova, A. A., Weeks, S. D., Antson, A. A., Gusev, N. B. & Strelkov, S. V. (2017). Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator. Structure, 25(2), 305–316. DOI: 10.1016/j.str.2016.12.005
Srivastava, S. K., Lambadi, P. R., Ghosh, T., Pathania, R. & Navani, N. K. (2014). Genetic regulation of spy gene expression in Escherichia coli in the presence of protein unfolding agent ethanol. Gene, 548(1), 142–148. DOI: 10.1016/j.gene.2014.07.003
Suss, O. & Reichmann, D. (2015). Protein plasticity underlines activation and function of ATP-independent chaperones. Frontiers in Molecular Biosciences, 2(43), 1-10. DOI: 10.3389/fmolb.2015.00043
Tsai, C-J., Aslam, K., Drendel, H. M., Asiago, J. M., Goode, K. M., Paul, L. N., Rochet, J-C. & Hazbun, T. R. (2015). Hsp31 is a stress response chaperone that intervenes in the protein misfolding process. Journal of Biological Chemistry, 290(41), 24816–24834. DOI: 10.1074/jbc.M115.678367
Usami, Y., Hatano, T., Imai, S., Kubo, S., Sato, S., Saiki, S., Fujioka, Y., Ohba, Y., Sato, F., Funayama, M., Eguchi, H., Shiba, K., Ariga, H., Shen, J. & Hattori, N. (2011). DJ-1 associates with synaptic membranes. Neurobiology of Disease, 43(3), 651–662. DOI: 10.1016/j.nbd.2011.05.014
van de Klundert, F. A., Smulders, R. H., Gijsen, M. L., Lindner, R. A., Jaenicke, R., Carver, J. A. & de Jong, W. W. (1998). The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone. European Journal of Biochemistry, 258(3), 1014-21. DOI: 10.1046/j.1432- 1327.1998.2581014.x
Verschuure, P., Croes, Y., van den IJssel, P. R., Quinlan, R. A., de Jong, W. W. & Boelens, W. C. (2002). Translocation of small heat shock proteins to the actin cytoskeleton upon proteasomal inhibition. Journal of Molecular and Cellular Cardiology, 34(2), 117–128. DOI: 10.1006/jmcc.2001.1493
Vogt, S. L. & Raivio, T. L. (2012). Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiology Letters, 326(1), 2–11. DOI: 10.1111/j.1574- 6968.2011.02406.x
Vos, M., Kanon, B. & Kampinga, H. (2009). HSPB7 is a SC35 speckle resident small heat shock protein. Biochimica et Biophysica Acta, 1793(8), 1343–1353. DOI: 10.1016/j. bbamcr.2009.05.005
Voth, W. & Jakob, U. (2017). Stress-activated chaperones: a first line of defense. Trends in Biochemical Sciences, 42(11), 899–913. DOI: 10.1016/j.tibs.2017.08.006
Webster, J. M., Darling, A. L., Uversky, V. N. & Blair, L. J. (2019). Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Frontiers in Pharmacology, 10(1047), 1-18. DOI: 10.3389/fphar.2019.01047
Weeks, S. D., Baranova, E. V., Heirbaut, M., Beelen, S., Shkumatov, A. V., Gusev, N. B. & Strelkov, S. V. (2014). Molecular structure and dynamics of the dimeric human small heat shock protein HSPB6. Journal of Structural Biology, 185(3), 342–354. DOI: 10.1016/j.jsb.2013.12.009
Wei, Y., Ringe, D., Wilson, M. A. & Ondrechen, M. J. (2007). Identification of functional subclasses in the DJ-1 superfamily proteins. PLoS Computational Biology, 3(1), 120-126. DOI: 10.1371/journal.pcbi.0030010
Won, H. S., Low, L. Y., Guzman, R. D., Martinez-Yamout, M., Jakob, U. & Dyson, H. J. (2004). The zinc-dependent redox switch domain of the chaperone Hsp33 has a novel fold. Journal of Molecular Biology, 341(4), 893–899. DOI: 10.1016/j.jmb.2004.06.046
Wu, K., Stull, F., Lee, C. & Bardwell, J. C. (2019). Protein folding while chaperone bound is dependent on weak interactions. Nature Communications, 10(1), 4833. DOI: 10.1038/s41467-019-12774-6