2020, Number 3
<< Back Next >>
Arch Neurocien 2020; 25 (3)
Metabolism and effect of dehydroepiandrosterone (DHEA) in the central nervous system
Márquez-Flores MÁ, Sandoval H, Pérez-Neri I, Ríos C, Diéguez-Campa-Carlos E
Language: Spanish
References: 20
Page: 51-58
PDF size: 432.10 Kb.
ABSTRACT
Dehydroepiandrosterone (DHEA) is not only an active steroid, but it also leads to nongenomic
effects. More findings on steroid synthesis in the central nervous system (CNS)
have been reported showing that the differences with endocrine organs are minimal.
Maybe the explanation of the multiple effects of a single molecule as DHEA lies in those
pathways. In the CNS, those actions include neuroprotection, dendrite growth, apoptosis,
catecholamine synthesis and secretion, as well as antioxidant, anti-inflammatory, and antiglucocorticoid
functions. Changes in DHEA serum concentration are associated with several
diseases. This concentration decreases with age from its maximum in the young people
to its minimum when some aging-related disorders are increasingly prevalent. Both DHEA
and other steroids generate some effects, but they may also be metabolized to other active
molecules, increasing the complexity of their effect; thus, it is essential to describe those
metabolic interactions to understand the findings regarding these messengers better.
REFERENCES
Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol. 2009; 30(1):65-91. DOI: 10.1016/j. yfrne.2008.11.002
Pérez-Neri I, Ríos C. The role of DHEA in mental disorders. In: Watson R, editor. DHEA in Human Health and Aging. Boca Raton: CRC Press. 2011; 239-252. ISBN: 9781439838839
Bélanger N, Grégoire L, Bédard PJ, Di Paolo T. DHEA improves symptomatic treatment of moderately and severely impaired MPTP monkeys. Neurobiol Aging. 2006; 27(11):1684-1693. DOI: 10.1016/j.neurobiolaging.2005.09.028
Shealy CN. A review of dehydroepiandrosterone (DHEA). Integr Psych Behav. 1995;30(4):308-313. DOI: 10.1007/BF02691603
Cascio C, Prasad VV, Lin YY, Lieberman S, Papadopoulos V. Detection of P450c17-independent pathways for dehydroepiandrosterone (DHEA) biosynthesis in brain glial tumor cells. Proc Natl Acad Sci U S A. 1998; 95(6):2862- 67. DOI: 10.1073/pnas.95.6.2862
Zwain IH, Yen SS. Dehydroepiandrosterone: biosynthesis and metabolism in the brain. Endocrinology. 1999;140(2):880-7. DOI: 10.1210/endo.140.2.6528
Baulieu EE. Neurosteroids: a new function in the brain. Biol Cell. 1991; 71(1-2):3-10. DOI: 10.1016/0248-4900(91)90045-o
Brown MS, Kovanen PT, Goldstein JL. Receptor-mediated uptake of lipoprotein-cholesterol and its utilization for steroid synthesis in the adrenal cortex. Recent Prog Horm Res. 1979; 35:215-57. DOI: 10.1016/b978-0-12-571135-7.50009-6.
Gwynne JT, Strauss JF. The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr Rev. 1982; 3:299-329. DOI: 10.1210/edrv-3-3-299
Beins DM, Vining R, Balasubramaniam S. Regulation of neutral cholesterol esterase and acyl-CoA : cholesterol acyltransferase in the rat adrenal gland. Biochem J. 1982; 202(3):631-637. DOI: 10.1042/bj2020631
Lin D, Sugawara T, Strauss JF, Clark BJ, Stocco DM, Saenger P, Rogol A, Miller WL. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science. 1995; 267(5205):1828-31. DOI: 10.1126/science.7892608
Strott CA. The search for the elusive adrenal steroidogenic “regulatory” protein. Trends Endocrinol Metab. 1990; 1(6):31214. https://doi.org/10.1016/1043-2760(90)90070-J
Di Blasio AM, Voutilainen R, Jaffe RB, Miller WL. Hormonal regulation of messenger ribonucleic acids for P450scc (cholesterol side-chain cleavage enzyme) and P450c17 (17 ahydroxylase/ 17, 20-lyase) in cultured human fetal adrenal cells. J Clin Endocrinol Metab. 1987; 65(1):170-5. DOI: 10.1210/jcem-65-1-170
Pérez-Neri I, Montes S, Ojeda-López C, Ramírez-Bermúdez J, Ríos C. Modulation of neurotransmitter systems by dehydroepiandrosterone and dehydroepiandrosterone sulfate: mechanism of action and relevance to psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32(5):111830. DOI: 10.1016/j.pnpbp.2007.12.001
Harris DS, Wolkowitz OM, Reus VI. Movement disorder, memory, psychiatric symptoms and serum DHEA levels in schizophrenic and schizoaffective patients. World J Biol Psychiatry. 2001; 2:99-102. DOI: 10.3109/15622970109027500
Mishra M, Singh R, Sharma D. Antiepileptic action of exogenous dehydroepiandrosterone in iron-induced epilepsy in rat brain. Epilepsy Behav.2010; 264-71. DOI: 10.1016/j.yebeh.2010.06.048
Galimberti CA, Magri F, Copello F, Arbasino C, Cravello L, Casu M, et al. Seizure Frequency and cortisol and dehydroepiandrosterone sulfate (DHEAS) levels in women with epilepsy receiving antiepileptic drug reatment. Epilepsia.2005; 46(4):517-23. DOI: 10.1111/j.0013-9580.2005.59704.x
Zajda ME, Krzascik P, Hill M, Majewska MD. Psychomotor and rewarding properties of the neurosteroids dehydroepiandrosterone sulphate and androsterone: effects on monoamine and steroid metabolism. Acta Neurobiol Exp (Wars). 2012; 72(1):65-79. PMID: 22508085
Kalimi M, Shafagoj Y, Loria R, Padgett D, Regelson W. Antiglucocorticoid effects of dehydroepiandrosterone (DHEA). Mol Cel Biochem. 1994; 131(2):99-104. DOI: 10.1007/BF00925945
Aly HF, Metwally FM, Ahmed HH. Neuroprotective effects of dehydroepiandrosterone (DHEA) in rat model of Alzheimer’s disease. Acta Biochim Pol. 2011; 58(4):513-20. http://www.actabp.pl/pdf/4_2011/513.pdf