2020, Número 3
<< Anterior Siguiente >>
Arch Neurocien 2020; 25 (3)
Epilepsia del lóbulo temporal pos-estatus epilepticus por pilocarpina, y conexiones hipocampo-talamocorticales
López-Hernández ME, Solís H
Idioma: Español
Referencias bibliográficas: 147
Paginas: 33-50
Archivo PDF: 747.65 Kb.
RESUMEN
La Epilepsia del Lóbulo Temporal (ELT) es el tipo más frecuente de las epilepsias crónicas
parciales y refractaria al tratamiento médico en el adulto. Es un trastorno de la excitabilidad
neuronal cuya característica es que las crisis se inician en cualquier parte del lóbulo temporal
y en el que se involucran diferentes procesos celulares y moleculares de distintas redes
neuronales tanto corticales como subcorticales. El objetivo de esta revisión es considerar
varios de los aspectos generales y específicos de la epilepsia del lóbulo temporal (ELT) en
el humano y establecer posibles relaciones con los hallazgos obtenidos principalmente
en el modelo experimental de ratas pos-status epilepticus (SE) por pilocarpina en
nuestro laboratorio, con la información que reporta la bibliografía. En particular, analizar
varios de los diferentes cambios que se establecen en los mecanismos celulares y redes
neuronales en el hipocampo, tálamo y corteza cerebral. Con la amplia investigación que
se realiza sobre el tema, hemos identificado diversos y complejos procesos que suceden,
en las diferentes estructuras encefálicas, durante el desarrollo de la epileptogénesis, sin
embargo, aún tenemos muchas preguntas por resolver utilizando el modelo experimental
de crisis convulsivas y el estudio de la epilepsia desde un punto de vista clínico.
REFERENCIAS (EN ESTE ARTÍCULO)
Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002 43(3):219-227.
Bartolomei F, Lagarde S, Wendling F, McGonigal A, Jirsa V, Guye M, Bénar C. Defining epileptogenic networks: Contribution of SEEG and signal analysis. Epilepsia. 2017; 58(7):1131-1147. doi: 10.1111/epi.13791
Vuong J, Devergnas A. The role of the basal ganglia in the control of seizure. J Neural Transm. 2018, 125:531-545. doi.org/10.1007/s00702-017-1768-x
Engel J Jr. Mesial temporal lobe epilepsy: what have we learned? Neuroscientist. 2001; 7(4):340-352.
Moran NF, Lemieux L, Kitchen ND, Fish DR., et al., Extrahippocampal temporal lobe atrophy in temporal lobe epilepsy and mesial temporal sclerosis. Brain. 2001; 124:167-175.
Wieser HG. ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia. 2004; 45(6):695714.
Bertram EH. Temporal lobe epilepsy: where do the seizures really begin? Epilepsy & Behavior. 2009; 14:32-37.
ILAE International League Against Epilepsy. EpilepsyDiagnosis.org Diagnostic Manual. Temporal Lobe Seizure. https://www.epilepsydiagnosis.org/seizure/temporal-overview.html
Wieser HG, Silfvenius H. Overview: epilepsy surgery in developing countries. Epilepsia. 2000; 41 (S4): S3-S9.
Laxer KD, Trinka E, Hirsch L, Cendes F, Langfitt J., et al. The consequences of refractory epilepsy and its treatment. Epilepsy & Behavior. 2014; 37:59-70.
Ali A. Global Health: Epilepsy. Semin Neurol. 2018; 38(2):191-199.
Vaughan KA, Ramos CL, Buch VP, Mekary RA., et al. An estimation of global volume of surgically treatable epilepsy based on a systematic review and meta-analysis of epilepsy. J Neurosurg. 2018 DOI: https://doi. org/10.3171/2018.3.JNS171722
Xue-Ping W, Hai-Jiao W, Li-Na Z, Xu D, Ling L. Risk factors for drug-resistant epilepsy: A systematic review and metaanalysis. Medicine. 2019; 98(30):e16402. http://dx.doi.org/10.1097/MD.0000000000016402
Roy PL, Ronquillo LH, Ladino LD, Tellez-Zenteno JF. Risk factors associated with drug resistant focal epilepsy in adults: A case control study. Seizure. 2019; 73:46-50. https://doi.org/10.1016/j.seizure.2019.10.020
Blumcke I, Spreafico R, Haaker G., et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N England J Med. 2017, 377(17):1648-1656. DOI: 10.1056/NEJMoa1703784
Turski WA, Cavalheiro EA, Schwarz M, et al. Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behavioural Brain Res. 1983; 9(3):315-35.
Turski WA, Cavalheiro EA, Bortolotto ZA, Mello LM., et al. Seizures produced by pilocarpine in mice: a behavioral, electroencephalographic and morphological analysis. Brain Res. 1984; 321(2):237-53.
Turski L, Cavalheiro EA, Sieklucka-Dziuba M., et al. Seizures produced by pilocarpine: neuropathological sequelae and activity of glutamate decarboxylase in the rat forebrain. Brain Res. 1986; 398(1):37-48.
Babb TL, Kupfer WR, Pretorius JK, Crandall PH., et al. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience. 1991; 42(2):351-63.
Arida RM, Scorza FA, de Araujo Peres C., et al. The course of untreated seizures in the pilocarpine model of epilepsy. Epilepsy Res. 1999; 34(2-3):99-107.
Covolan L, Ribeiro LTC, Longo BM, et al. Cell damage and neurogenesis in the dentate granule cell layer of adult rats after pilocarpine-or kainate-induced status epilepticus. Hippocampus. 2000; 10(2):169-80.
Polli RS, Malheiros JM, dos Santos R, et al. Changes in hippocampal volume are correlated with cell loss but not with seizure frequency in two chronic models of temporal lobe epilepsy. Front Neurol. 2014, 5:111. doi: 10.3389/fneur.2014.00111
Turski L, Ikonomidou C, Turski WA, Bortolotto ZA. Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse. 1989, 3(2):154-71.
Hamilton SE, Loose MD, Qi M, et al. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA. 1997; 94(24):13311-316.
Buckmaster PS. Laboratory animal models of temporal lobe epilepsy. Comp Med. 2004; 54(5):473-85.
Solís H, López-Hernández E. Canales de K+ tipo M y su relación con la canalopatía en la epileptogénesis. Arch Neurocien (Mex). 2011; 16(4):200-208.
Nirwan N, Vyas P, Vohora D. Animal models of status epilepticus and temporal lobe epilepsy: a narrative review Rev Neurosci. 2018; 29(7):757-770. https://doi.org/10.1515/revneuro-2017-0086
Meldrum B. Excitotoxicity and epileptic brain damage. Epilepsy Res. 1991; 10(1):55-61.
Smolders I, Khan GM, Manil J, et al. NMDA receptor-mediated pilocarpine-induced seizures: characterization in freely moving rats by microdialysis. Br J Pharmacol. 1997; 121(6):1171-1179.
Di Maio R, Colangeli R and Di Giovanni G. WIN 55,212-2 Reverted Pilocarpine-Induced Status Epilepticus Early Changes of the Interaction among 5-HT2C/NMDA/CB1 Receptors in the Rat Hippocampus. ACS Chem Neurosci. 2019; 10(7):3296-3306. DOI: 10.1021/acschemneuro.9b00080
Petito CK, Schaefer JA, Plum F. Ultrastructural characteristics of the brain and blood-brain barrier in experimental seizures. Brain Res. 1977; 127(2):251-67.
Erakovic V, Župan G, Varljen J, Laginja J, et al. Lithium plus pilocarpine induced status epilepticus—biochemical changes. Neurosci Res. 2000; 36(2):157-66.
Eid T, Williamson A, Lee TSW, Petroff OA, et al. Glutamate and astrocytes—key players in human mesial temporal lobe epilepsy? Epilepsia. 2008; 49 Suppl 2:42-52. doi: 10.1111/j.1528-1167.2008.01492.x
Pereno GL. Fisiopatología de la epilepsia del lóbulo temporal: revisión del proceso de muerte neuronal a la neuroplasticidad. RACC. 2010; 2(1):46-57.
Friedman A, Heinemann U. Role of Blood-Brain Barrier Dysfunction in Epileptogenesis. En: Noebels JL, Avoli M, Rogawski MA, et al., Eds. Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th Ed. 2012. Bethesda (MD): National Center for Biotechnology Information (US); 2012.
Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005; 46(11):172443.
Oby E, Janigro D. The blood–brain barrier and epilepsy. Epilepsia. 2006; 47(11):1761-74. doi: 10.1111/j.1528-1167.2006.00817.x
Solís H, López-Hernández E, Estrada FS. La barrera hematoencefálica y epilepsia del lóbulo temporal. Arch Neurocien (Mex). 2014; 19(1):42-47.
Van Vliet EA, Aronica E, Gorter JA. Role of blood–brain barrier in temporal lobe epilepsy and pharmacoresistance Neuroscience. 2014; 277:455-73. http://dx.doi.org/10.1016/j.neuroscience.2014.07.030
Gorter JA, van Vliet EA, Aronica E. Status epilepticus, blood–brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav. 2015; 49:13-6. http://dx.doi.org/10.1016/j.yebeh.2015.04.047
Bankstahl M, Breuer H, Leiter I, Märkel M, Bascuñana P. Blood–brain barrier leakage during early epileptogenesis is associated with rapid remodeling of the neurovascular unit. eNeuro. 2018, 10.1523/ENEURO.0123-18.2018.
Blumenfeld H, McNally KA, Vanderhill SD. et al. Positive and negative network correlations in temporal lobe epilepsy. Cereb Cortex. 2004; 14(8):892-902. doi:10.1093/cercor/bhh048
Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, et al. Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain. 2007; 139 (7):1942-56. doi:10.1093/brain/awm118
Choy M, Wells JA, Thomas DL, Gadian DG, et al. Cerebral blood flow changes during pilocarpine-induced status epilepticus activity in the rat hippocampus. Exp Neurol. 2010; 225(1):196201. doi:10.1016/j.expneurol.2010.06.015
Reddy SD, Younus I, Sridhar V, Reddy DS. Neuroimaging Biomarkers of Experimental Epileptogenesis and Refractory Epilepsy. Int J Mol Sci. 2019; 20(1):220. doi:10.3390/ijms20010220
Estrada FS, Hernández VS, López-Hernández E, et al. Glial activation in a pilocarpine rat model for epileptogenesis: a morphometric and quantitative analysis. Neurosci Lett. 2012; 514 (1):51-6. doi:10.1016/j.neulet.2012.02.055
Lee HJ, Seo SA, Park KM. Quantification of thalamic nuclei in patients diagnosed with temporal lobe epilepsy and hippocampal sclerosis. Neuroradiology. 2020; 62(2): 185-195. https://doi.org/10.1007/s00234-019-02299-6
Hong S, Jian Cheng H, JiaWen W, ShuQin Z, et al. Losartan inhibits development of spontaneous recurrent seizures by preventing astrocyte activation and attenuating blood-brain barrier permeability following pilocarpine-induced status epilepticus. Brain Res Bull. 2019; 149:251-259. https://doi.org/10.1016/j.brainresbull.2019.05.002
McCormick DA, Contreras D. On the cellular and network bases of epileptic seizures. Annu Rev Physiol. 2001; 63:815-46.
Jefferys JGR. Advances in understanding basic mechanisms of epilepsy and seizures. Seizure. 2010, 19:638-646. doi:10.1016/j.seizure.2010.10.026
Da Silva FHL, Gorter JA, Wadman WJ. Epilepsy as a dynamic disease of neuronal networks. Handbook of Clinical Neurology. 2012, 107:35-62.
Avoli M. A brief history on the oscillating roles of thalamus and cortex in absence seizures. Epilepsia. 2012; 53(5):779-789. doi: 10.1111/j.1528-1167.2012.03421.x
Paz JT, Huguenard JR. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci. 2015; 18(3):351-359. doi:10.1038/nn.3950
Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, et al. Long-Term Effects of Pilocarpine in Rats: Structural Damage of the Brain Triggers Kindling and Spontaneous I Recurrent Seizures. Epilepsia. 1991; 32(6):778-782.
Fujikawa DG. The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res. 1996; 725(1):11-22.
Lévesque M, Avoli M, Bernard C. Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. J Neurosci Methods. 2016; 260:45-52. doi:10.1016/j.jneumeth.2015.03.009.
De Lanerolle NC, Kim JH, Robbins RJ, Spencer DD. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res. 1989; 495:387-395.
Blümcke I, Zuschratter W, Schewe JC, et al. Cellular pathology of hilar neurons in Ammon's horn sclerosis. J Comp Neurol. 1999; 414(4):437-53.
Blümcke I, Suter B, Behle K, Kuhn R, Schramm J, et al. Loss of hilar mossy cells in Ammon's horn sclerosis. Epilepsia. 2000, 41(S6) : S174-80.
Blümcke I, Thom M, Wiestler OD. Ammon's horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol. 2002; 12(2):199-211.
Thom M, Sisodiya SM, Beckett A, et al. Cytoarchitectural abnormalities in hippocampal sclerosis. J Neuropathol Exp Neurol. 2002; 61(6): 510-9.
López-Hernández E, Solís H. Epilepsia del lóbulo temporal y las neuronas hipocampales de las áreas CA1 y CA3. Rev Fac Med (Méx). 2012; 55(5):16-25.
Steve TA, Jirsch JD, Gross DW. Quantification of subfield pathology in hippocampal sclerosis: a systematic review and metaanalysis. Epilepsy Res. 2014; 108(8):1279-85. http://dx.doi.org/10.1016/j.eplepsyres.2014.07.003
Binder DK, Steinhäuser C. Functional changes in astroglial cells in epilepsy. Glia. 2006, 54(5):358-68. DOI: 10.1002/ glia.20394
Ullah G, Cressman JR Jr, Barreto E, Schiff SJ. The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. J Comput Neurosci. 2009; 26(2):171- 183. DOI 10.1007/s10827-008-0130-6
Allam SL, Ghaderi VS, Bouteiller JMC, et al. A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking. Front Comput Neurosci. 2012; 6:70. doi: 10.3389/ fncom.2012.00070
Wilcox KS, Gee JM, Gibbons MB, Tvrdik P, White JA. Altered structure and function of astrocytes following status epilepticus Epilepsy & Behav. 2015; 49:17-19. http://dx.doi.org/10.1016/j.yebeh.2015.05.002
Parent JM, Timothy WY, Leibowitz RT, et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997, 17(10):3727-38.
Parent JM, Lowenstein DH. Seizure-induced neurogenesis: are more new neurons good for an adult brain? Prog Brain Res. 2002;135:121-31.
Parent JM, Kron MM. Neurogenesis and epilepsy. En: Noebels JL, Avoli M, Rogawski MA, et al. Eds. Jasper's Basic Mechanisms of the Epilepsies. 4th Ed. 2012. Bethesda (MD): National Center for Biotechnology Information (US). doi: 10.1111/j.1528-1167.2010.02831.x
Ribak CE, Dashtipour K. Neuroplasticity in the damaged dentate gyrus of the epileptic brain. Prog Brain Res. 2002,136:319-28.
Scharfman HE, Sollas AL, Berger RE, et al. Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol. 2003; 90(4):2536-47.
Shapiro LA, Korn MJ, Ribak CE. Newly generated dentate granule cells from epileptic rats exhibit elongated hilar basal dendrites that align along GFAP-immunolabeled processes. Neuroscience. 2005; 136(3):823-31. doi:10.1016/j.neuroscience.2005.03.059
Shapiro LA, Ribak CE. Newly born dentate granule neurons after pilocarpine-induced epilepsy have hilar basal dendrites with immature synapses. Epilepsy Res. 2006; 69(1):53-66. doi:10.1016/j.eplepsyres.2005.12.003
Kron MM, Zhang H, Parent JM. The developmental stage of dentate granule cells dictates their contribution to seizureinduced plasticity. J Neurosci. 2010; 30(6):2051-9. DOI:10.1523/JNEUROSCI.5655-09.2010
Buckmaster PS. Mossy Fiber Sprouting in the Dentate Gyrus. En: Noebels JL, Avoli M, Rogawski MA, et al. Eds. Jasper's Basic Mechanisms of the Epilepsies. 4th Ed. 2012. Bethesda (MD): National Center for Biotechnology Information (US).
Althaus AL, Zhang H, Parent JM. Axonal plasticity of agedefined dentate granule cells in a rat model of mesial temporal lobe epilepsy. Neurobiol Dis. 2016; 86: 187–196. doi:10.1016/j.nbd.2015.11.024.
Cavazos JE, Cross DJ. The role of synaptic reorganization in mesial temporal lobe epilepsy. Epilepsy & Behav. 2006; 8:483–493. doi:10.1016/j.yebeh.2006.01.011
Le Duigou C, Simonnet J, Teleñczuk MT, Fricker D, et al. Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network. Front Cell Neurosci. 2014; 8:48. doi: 10.3389/fncel.2013.00262
Buckmaster PS. Does mossy fiber sprouting give rise to the epileptic state? Adv Exp Med Biol. 2014, 813:161-8. DOI 10.1007/978-94-017-8914-1_13
Smith BN. Sprouted Mossy Fiber Connections of Adult-Born Granule Cells: Detonate or Fizzle? Epilepsy Curr. 2017; 17(6):379-380.
Hendricks WD, Westbrook GL, Schnell E. Early detonation by sprouted mossy fibers enables aberrant dentate network activity. Proc Natl Acad Sci USA. 116(22):10994-999. doi:10.1073/pnas.1821227116/-/DCSupplemental.
Long LL, Song YM, Xu L, Yi F, Long HY, et al. Aberrant neuronal synaptic connectivity in CA1 area of the hippocampus from pilocarpine-induced epileptic rats observed by fluorogold. Int J Clin Exp Med. 2014; 7(9):2687-2695.
Siddiqui AH, Joseph SA. CA3 axonal sprouting in kainateinduced chronic epilepsy. Brain Res. 2005; 1066(1-2):129- 46. doi:10.1016/j.brainres.2005.10.066
Heinemann U, Zhang C Li, Eder C. Entorhinal cortex— hippocampal interactions in normal and epileptic temporal lobe Hippocampus. 1993; 3S:89-98.
Gloveli T, Schmitz D, Heinemann U. Interaction between superficial layers of the entorhinal cortex and the hippocampus in normal and epileptic temporal lobe. Epilepsy Res. 1998; 32(12): 183-93.
Pitkänen A, Tuunanen J, Kälviäinen R, Partanen K, et al. Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Res. 1998; 32(1-2):233-53.
Dalby NO, Mody I. The process of epileptogenesis: a pathophysiological approach. Curr Opin Neurol. 2001; 14(2):18792.
Kobayashi M, Wen X, Buckmaster PS. Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci. 2003; 17;23(24):8471-9.
Bartolomei F, Khalil M, Wendling F, Sontheimer A, et al. Entorhinal cortex involvement in human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study. Epilepsia. 2005; 46(5):677-87.
Hargus NJ, Merrick EC, Nigam A, Kalmar CL. Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. Neurobiol Dis. 2011; 42(2):361-376. doi:10.1016/j.nbd.2010.10.004
Grabenstatter HL, Russek SJ, Brooks-Kayal AR. Molecular pathways controlling inhibitory receptor expression. Epilepsia. 2012; 53(09):71-78. doi: 10.1111/epi.12036
Wolfart J, Laker D. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential. Front Physiol. 2015; 6:168. doi: 10.3389/fphys.2015.00168
Nakayama Y, Masuda H, Shirozu H, Ito Y, et al. Features of amygdala in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: an MRI volumetric and histopathological study. Epilepsy Res. 2017; 135:50-55. doi. org/10.1016/j.eplepsyres.2017.05.010
Tong X, An D, Xiao F, Lei D, Niu R, Li W, Ren J, et al. Real-time effects of interictal spikes on hippocampus and amygdala functional connectivity in unilateral temporal lobe epilepsy: An EEG-fMRI study. Epilepsia. 2019; 60(2):246-254. DOI: 10.1111/epi.14646
96. Scholl EA, Dudek FE, Ekstrand JJ. Neuronal degeneration is observed in multiple regions outside the hippocampus after lithium pilocarpine-induced status epilepticus in the immature rat. Neuroscience. 2013, 252:45-59. doi:10.1016/j.neuroscience.2013.07.045.
97. Szabo K, Poepel A, Pohlmann-Eden B, Hirsch J, et al. Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus. Brain. 2005; 128(6):1369-76. doi:10.1093/brain/ awh454
98. Hamani C, Hodaie M, Chiang J, del Campo M, et al. Deep brain stimulation of the anterior nucleus of the thalamus: effects of electrical stimulation on pilocarpine-induced seizures and status epilepticus. Epilepsy Res. 2008; 78(2-3):117-23. https://doi.org/10.1016/j.eplepsyres.2007.09.010
99. Covolan L. de Almeida ACG, Amorim B, Cavarsan C, et al. Effects of anterior thalamic nucleus deep brain stimulation in chronic epileptic rats. PLoS One. 2014,9(6):e97618. doi:10.1371/journal.pone.0097618
100. Ferreira ES, Vieira LG, Moraes DM, et al. Long-term effects of anterior thalamic nucleus deep brain stimulation on spatial learning in the pilocarpine model of temporal lobe epilepsy. Neuromodulation. 2018, 21(2):160-167. DOI: 10.1111/ner.12688
101. Fisher R, Salanova V, Witt T, Worth R, Henry T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia.2010; 51(5):899–908. doi: 10.1111/j.1528-1167.2010.02536.x
102. Chen YC, Zhu GY, Wang X, Shi L, Du TT, et al. Anterior thalamic nuclei deep brain stimulation reduces disruption of the blood-brain barrier, albumin extravasation, inflammation, and apoptosis in kainic acid-induced epileptic rats. Neurol Res. 2017; 39(12):1103-1113. DOI:10.1080/01616412.2017.1379241
Saillet S, Langlois M, Feddersen B, Minotti L, et al. Manipulating the epileptic brain using stimulation: a review of experimental and clinical studies. Epileptic Disord. 2009; 11(2):100-12.
Jobst BC. Electrical stimulation in epilepsy: vagus nerve and brain stimulation. Curr Treat Options Neurol. 2010; 12(5):443-53. DOI 10.1007/s11940-010-0087-4
Eastin TM, Lopez-Gonzalez MA. Stimulation and Neuromodulation in the Treatment of Epilepsy. Brain Sci. 2018; 8(1):2.
Klinger N, Mittal S. Deep brain stimulation for seizure control in drug-resistant epilepsy. Neurosurg Focus. 2018; 45(2). https://thejns.org/doi/abs/10.3171/2018.4.FOCUS1872
Magdaleno-Madrigal VM, Contreras-Murillo G, Valdés-Cruz A, Martínez-Vargas D, Martínez A, et al. Effects of Highand Low-Frequency Stimulation of the Thalamic Reticular Nucleus on Pentylentetrazole-Induced Seizures in Rats. Neuromodulation. 2019; 22(4):425-434. DOI: 10.1111/ner.12926
Rosenberg DS, Mauguière F, Demarquay G, et al. Involvement of medial pulvinar thalamic nucleus in human temporal lobe seizures. Epilepsia. 2006, 47(1):98-107.
Rosenberg DS, Mauguière F, Catenoix H, Faillenot I, Magnin M. Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain. Cereb Cortex. 2009; 19(6):1462- 73. doi:10.1093/cercor/bhn185
Barron DS, Tandon N, Lancaster JL, Fox PT. Thalamic structural connectivity in medial temporal lobe epilepsy. Epilepsia. 2014, 55(6): e50–e55. doi: 10.1111/epi.12637
Nakae Y, Kudo Y, Yamamoto R, Dobashi Y, Kawabata Y, et al. Relationship between cortex and pulvinar abnormalities on diffusion-weighted imaging in status epilepticus. J Neurol. 2016; 263(1):127-32. DOI 10.1007/ s00415-015-7948-4
Dolleman-Van der Weel MJ, Lopes da Silva FH, Witter MP. Nucleus reuniens thalami modulates activity in hippocampal field CA1 through excitatory and inhibitory mechanisms. J Neurosci. 1997; 17(14):5640-50.
Bertram EH, Mangan PS, Zhang D, Scott CA, Williamson JM. The midline thalamus: alterations and a potential role in limbic epilepsy. Epilepsia. 2001; 42(8):967-78.
Hamani C, Paulo Id, Mello LE. Neo-Timm staining in the thalamus of chronically epileptic rats. Braz J Med Biol Res. 2005, 38(11):1677-82.
Çavdar S, Onat FY, Çakmak YÖ, Yananli HR, et al. The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat. J. Anat. 2008; 212:249–256. doi: 10.1111/j.1469-7580.2008.00858.x
Carman JB, Cowan WM, Powel TPS. Cortical connexions of the thalamic reticular nucleus. J. Anat.1964; 98 (4):587-598.
Jones EG. Some aspects of the organization of the thalamic reticular complex. J Comp Neurol. 1975, 162(3):285-308.
Crabtree JW. Functional Diversity of Thalamic Reticular Subnetworks. Front Syst Neurosci. 2018; 12: 41. doi: 10.3389/fnsys.2018.00041
Guillery RW, Harting JK. Structure and connections of the thalamic reticular nucleus: Advancing views over half a century. J Comp Neurol. 2003, 463(4):360-71. DOI: 10.1002/cne.10738
El Boukhari H, Ouhaz Z, Ba-M'hamed S, Bennis M. Early lesion of the reticular thalamic nucleus disrupts the structure and function of the mediodorsal thalamus and prefrontal cortex. Dev Neurobiol. 2020. doi:10.1002/ DNEU.22733.
Steriade M. Spindling, Incremental Thalamocortical Resposes, and Spike-Wave Epilepsy. In: Avoli M., Gloor P., Kostopoulos G., Naquet R. (eds) Generalized Epilepsy. Birkhäuser Boston. 1990.
Steriade M. Sleep, epilepsy, and thalamic reticular inhibitory neurons. Trends Neurosci. 2005; 28(6):317-24. doi:10.1016/j.tins.2005.03.007
Steriade M, Amzica F. Slow sleep oscillation, rhythmic Kcomplexes, and their paroxysmal developments. J Sleep Res. 1998;7 (S1):30-5.
Steriade M, Timofeev I. Corticothalamic operations through prevalent inhibition of thalamocortical neurons. Thalamus & Related Systems 1. 2001: 225–236.
Kelemen A, Barsi P, Gyorsok Z, Sarac J, et al. Thalamic lesion and epilepsy with generalized seizures, ESES and spikewave paroxysms--report of three cases. Seizure. 2006; 15(6):4548. doi:10.1016/j.seizure.2006.05.006
Timofeev I, Bazhenov M, Seigneur J, et al. Neuronal Synchronization and Thalamocortical Rhythms in Sleep, Wake and Epilepsy. En: Noebels JL, Avoli M, Rogawski MA, et al., Eds. Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th Ed. 2012, Bethesda (MD): National Center for Biotechnology Information (US).
Langlois M, Polack PO, Bernard H, David O, et al. Involvement of the Thalamic Parafascicular Nucleus in Mesial Temporal Lobe Epilepsy. J Neurosci. 2010; 30(49):16523–535. DOI:10.1523/JNEUROSCI.1109-10.2010
Li YH, Li JJ, Lu QC, Gong HQ, Liang PJ, et al. Involvement of Thalamus in Initiation of Epileptic Seizures Induced by Pilocarpine in Mice. Neural Plast. 2014; 2014: 675128. http://dx.doi.org/10.1155/2014/675128
Lee HJ, Seo SA, Park KM. Quantification of thalamic nuclei in patients diagnosed with temporal lobe epilepsy and hippocampal sclerosis. Neuroradiology. 2020; 62(2):185-195. https://doi.org/10.1007/s00234-019-02299-6
Jung KH, Chu K, Lee ST, Kim JH, Kang KM, et al. Regionspecific plasticity in the epileptic rat brain: A hippocampal and extrahippocampal analysis. Epilepsia. 2009; 50(3):537–549. doi: 10.1111/j.1528-1167.2008.01718.x
Song C, Xu W, Zhang X, Wang S, Zhu G, et al. CXCR4 antagonist AMD3100 suppresses the long-term abnormal structural changes of newborn neurons in the intraventricular kainic acid model of epilepsy. Mol Neurobiol. 2016; 53:1518–1532. DOI: 10.1007/s12035-015-9102-9
Zhou Z, Liu T, Sun X, Mu X, Zhu G, et al. CXCR4 antagonist AMD3100 reverses the neurogenesis promoted by enriched environment and suppresses long-term seizure activity in adult rats of temporal lobe epilepsy. Behav Brain Res. 2017; 322: 83–91. http://dx.doi.org/10.1016/j.bbr.2017.01.014
Bernhardt BC, Bernasconi N, Kim H, Bernasconi A. Mapping thalamocortical network pathology in temporal lobe epilepsy. Neurology. 2012, 78(2):129-36. DOI: 10.1212/WNL.0b013e31823efd0d
Sanabria ERG, da Silva AV, Spreafico R, et al. Damage, Reorganization, and Abnormal Neocortical Hyperexcitability in the Pilocarpine Model of Temporal Lobe Epilepsy. Epilepsia. 2002, 43(S5):96–106.
Bartolomei F, Cosandier-Rimele D, McGonigal A, Aubert S, Régis J, Gavaret M, el al. From mesial temporal lobe to temporoperisylvian seizures: a quantified study of temporal lobe seizure networks. Epilepsia. 2010; 51(10):2147- 58. doi: 10.1111/j.1528-1167.2010.02690.x
Wendling F, Chauvel P, Biraben A, Bartolomei F. From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy. Front Syst Neurosci. 2010; 25(4):154 doi: 10.3389/fnsys.2010.00154
Sloviter RS. The neurobiology of temporal lobe epilepsy: too much information, not enough knowledge. C R Biol. 2005, 328(2):143-53. doi:10.1016/j.crvi.2004.10.010
Biagini G, Baldelli E, Longo D, Contri M, et al. Proepileptic Influence of a Focal Vascular Lesion Affecting Entorhinal Cortex-CA3 Connections After Status Epilepticus. J Neuropathol Exp Neurol. 2008; 67 (7):687-1.
López-Hernández E, Gallegos-Santiago M, Solís H. Lesiones macroscópicas Artículo original observadas en núcleos talámicos después de Status Epilepticus por Pilocarpina Arch Neurocien 2018; 23 (1):16-22.
Fabene PF, Merigo F, Galiè M, Benati D, Bernardi P, et al. Pilocarpine-induced status epilepticus in rats involves ischemic and excitotoxic mechanisms. PLoS One. 2007; 2(10): e1105. doi:10.1371/journal.pone.0001105
Choy M, Wells JA, Thomas DL, Gadian DG, Scott RC, Lythgoe MF. Cerebral blood flow changes during pilocarpineinduced status epilepticus activity in the rat hippocampus. Exp Neurol. 2010; 225(1):196-201. doi:10.1016/j. expneurol.2010.06.015
Jeon SB, Parikh G, Choi HA, Lee K, Lee JH, et al. Acute cerebral microbleeds in refractory status epilepticus. Epilepsia. 2013; 54(5): e66-8. doi: 10.1111/epi.12113
Kan AA, de Jager W, de Wit, M, Heijnen C, et al. Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines. J Neuroinflammation. 2012; 9: 207.
Strauss KI, Elisevich KV. Brain region and epilepsyassociated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy. J Neuroinflammation. 2016; 13: 270. DOI: 10.1186/s12974-016-0727-z
de Vries EE, van den Munckhof B, Braun KP, van Royen-Kerkhof A, de Jager W, et al. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2016; 63:177-90. http://dx.doi. org/10.1016/j.neubiorev.2016.02.007
Leal B, Chaves J, Carvalho C, Rangel R, et al. Brain expression of inflammatory mediators in Mesial Temporal Lobe Epilepsy patients. J Neuroimmunol. 2017; 313, 82-88. http://dx.doi.org/10.1016/j.jneuroim.2017.10.014
Lee VLL, Shaikh MF. Inflammation:Cause or Consequence of Epilepsy? Epilepsy - Advances in Diagnosis and Therapy. IntechOpen. 2019:1-14.