2020, Número 3
<< Anterior Siguiente >>
Arch Neurocien 2020; 25 (3)
La inmunidad en enfermedades autoinmunes
Torres-Velasco ME, Gómez-Hollsten SM, Montes-Moratilla EU, Adalid-Peralta LV
Idioma: Español
Referencias bibliográficas: 45
Paginas: 59-69
Archivo PDF: 401.54 Kb.
RESUMEN
En este artículo se revisaron cuatro de las enfermedades autoinmunes más prevalentes en
México. Nos enfocamos especialmente en la actividad del sistema inmune (linfocitos T y B)
para entender cómo una alteración da lugar a una cascada de reacciones auto-lesivas para
el individuo. Asimismo, damos una gran relevancia a la Enfermedad de Parkinson donde
recientemente se ha encontrado un componente autoinmune.
REFERENCIAS (EN ESTE ARTÍCULO)
Gilhus NE. Myasthenia gravis. N Engl J Med. 2016; 375:2570-81. DOI: 10.1056/NEJMra1602678
Lee JI, Jander S. Myasthenia gravis: recent advances in immunopathology and therapy. Expert Rev Neurother. 2017; 17(3): 287–99. DOI: 10.1080/14737175.2017.1241144
Phillips WD, Vincent A. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000Res. 2016; F1000 Faculty Rev-1513 DOI: 10.12688/f1000research.8206.1
Frontera WR, Ochala J. Skeletal Muscle: A Brief Review of Structure and Function. Calcif Tissue Int. 2015; 96(3):183- 95. DOI: 10.1007/s00223-014-9915-y.
Arancibia D, Til PG, Carnevale SC, Tomas BM, Mas MS. Miastenia gravis: Un diagnóstico diferencial importante a la hora de evaluar a un paciente con sintomatología ORL. Rev Otorrinolaringol Cir. Cabeza Cuello. 2014; 74(1):57– 60. http://dx.doi.org/10.4067/S0718-48162014000100010
Gradolatto A, Nazzal D, Foti M, Bismuth J, Truffault F, Panse R Le, et al. Defects of immunoregulatory mechanisms in myasthenia gravis: Role of IL-17. Ann N Y Acad Sci. 2012; 1274:40-7. DOI: 10.1111/j.1749-6632.2012.06791.x.
Poëa-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M, Wakkach A, et al. Effects of cytokines on acetylcholine receptor expression: implications for Myasthenia Gravis. J Immunol. 2005; 174(10):5941–9. DOI: https://doi.org/10.4049/jimmunol.174.10.5941
Uzawa A, Kanai T, Kawaguchi N, Oda F, Himuro K, Kuwabara S. Changes in inflammatory cytokine networks in myasthenia gravis. Sci Rep. 2016; 6:25886. DOI: 10.1038/srep25886
Karim MR, Zhang H-Y, Yuan J, Sun Q, Wang Y-F. Regulatory B Cells in Seropositive Myasthenia Gravis versus Healthy Controls. Front Neurol. 2017; 8:43. DOI: 10.3389/fneur.2017.00043
Vander Heiden JA, Stathopoulos P, Zhou JQ, Chen L, Gilbert TJ, Bolen CR, et al. Dysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing. J Immunol. 2017; 198(4):1460–73. DOI: 10.4049/jimmunol.1601415
Berrih-Aknin S, Le Panse R. Myasthenia gravis: A comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmu. 2014; (52):90–100. DOI: 10.1016/j.jaut.2013.12.011
Cavalcante P, Bernasconi P, Mantegazza R. Autoimmune mechanisms in myasthenia gravis. Curr Opin Neurol. 2012; 25(5):621–9. DOI: 10.1097/WCO.0b013e328357a829
Gradolatto A, Nazzal D, Truffault F, Bismuth J, Fadel E, Foti M, et al. Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: Roles of IL-17 and TNF-a. J Autoimmun. 2014; 52:53–63. DOI:10.1016/j. jaut.2013.12.015
Raibagkar P, Ferry JA, Stone JH. Is MuSK myasthenia gravis linked to IgG4-related disease?. J Neuroimmunol. 2017; 305:82–3. DOI: 10.1016/j.jneuroim.2017.02.004
La Paglia GMC, Leone MC, Lepri G, Vagelli R, Valentini E, Alunno A, et al. One year in review 2017: Systemic lupus erythematosus. Clini Exp Rheumatol S.A.S. 2017; (35):551–61.
Giang S, La Cava A. Regulatory T Cells in SLE: Biology and Use in Treatment. Curr Rheumatol Rep. 2016; 18(11):67. DOI: 10.1007/s11926-016-0616-6.
Zharkova O, Celhar T, Cravens PD, Satterthwaite AB, Fairhurst AM, Davis LS. Pathways leading to an immunological disease: systemic lupus erythematosus. Rheumatology (Oxford). 2017; 56(1):i55-i66. DOI: 10.1093/rheumatology/ kew427
Pathak S, Mohan C. Cellular and molecular pathogenesis of systemic lupus erythematosus: Lessons from animal models. Arthritis Res Ther. 2011; 13(5):241. DOI: 10.1186/ar3465
Lauková L, Konecná B. NETosis - Dr. Jekyll and Mr. Hyde in inflammation. J App Biomed. 2018; 16: 1–9. DOI: 10.1016/j.jab.2017.10.002
D’Cruz DP, Khamashta MA, Hughes GR. Systemic lupus erythematosus. Lancet. 2007; 17(369): 587–96. DOI:https:// doi.org/10.1016/S0140-6736(07)60279-7
Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med. 2008; 28; 358(9):929-39. DOI: 10.1056/ NEJMra071297.
D’Cruz DP, Khamashta MA, Hughes GR V. Systemic lupus erythematosus. Lancet (London, England). 2007; 369(9561):587–96. DOI: 10.1136/bmj.332.7546.890
Xibillé-Friedmann D, Pérez-Rodríguez M, Carrillo-Vázquez S, Álvarez-Hernández E, Aceves FJ, Ocampo-Torres MC, et al. Clinical practice guidelines for the treatment of systemic lupus erythematosus by the Mexican College of Rheumatology. Reumatol Clin. 2019; 15(1):3–20. DOI:https://doi.org/10.1016/j.reuma.2018.03.011
Broder A, Khattri S, Patel R, Putterman C. Undertreatment of disease activity in systemic lupus erythematosus patients with endstage renal failure is associated with increased all-cause mortality. J Rheumatol. 2011; 38(11):2382–9. DOI: 10.3899/jrheum.110571
Liu Y, Anders HJ. Lupus Nephritis: From Pathogenesis to Targets for Biologic Treatment. Nephron Clin Pract. 2014; 128(3-4):224-31. https://www.karger.com/Article/FullText/368581
Firestein GS, McInnes IB. Immunopathogenesis of Rheumatoid Arthritis. Immunity. 2017;46(2):183–96. DOI:http:// dx.doi.org/10.1016/j.immuni.2017.02.006
Neira F., Ortega J. L.. Tratamiento del dolor en la artritis reumatoide fundamentado en medicina basada en la evidencia. Rev. Soc. Esp. Dolor. 2006; 13(8):561-566. http://scielo.isciii.es/scielo. php?script=sci_arttext&pid=S1134-80462006000800008&lng=es.
Mateen, Somaiya, et al. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clinica Chimica Acta. 2016;455:161-171. DOI:https://doi.org/10.1016/j.cca.2016.02.010
Angelotti F, Parma A, Cafaro G, Capecchi R, Alunno A, Puxeddu I. One year in review 2017: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2017; 35(3):368–78.
Hernández AS. Células colaboradoras (TH1, TH2, TH17) y reguladoras (Treg, TH3, NKT) en la artritis reumatoide. Reumatol Clin Supl.2009;5:1–5. DOI:https://doi.org/10.1016/j.reuma.2008.11.012
Ganong. Fisiología médica, 25e. AccessMedicina: McGraw-Hill Medical; 2019. https://accessmedicina.mhmedical. com/book.aspx?bookID=1800
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms Underlying Inflammation in Neurodegeneration. 2010; 140: 918–34. DOI:https://doi.org/10.1016/j.cell.2010.02.016
Collins LM, Toulouse A, Connor TJ, Nolan YM. Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology. 2012; 62(7):2154– 68. DOI:https://doi.org/10.1016/j. neuropharm.2012.01.028
Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012; 2(2). DOI: 10.1101/ cshperspect.a009399
Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Park Relat Disord. 2012;18: S210-S212. DOI:https://doi.org/10.1016/S1353-8020(11)70065-7
Bas J, Calopa M, Mestre M, Molleví DG, Cutillas B, Ambrosio S, et al. Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J Neuroimmunol. 2001; 113(1):146–52. DOI:https://doi.org/10.1016/ S0165-5728(00)00422-7
Sommer A, Maxreiter F, Krach F, Fadler T, Grosch J, Maroni M, et al. Th17 Lymphocytes Induce Neuronal Cell Death in a Human iPSC-Based Model of Parkinson’s Disease. Cell Stem Cell. 2018;23(1):123-131.e6. DOI:https:// doi.org/10.1016/j.stem.2018.06.015
Baba Y, Kuroiwa A, Uitti RJ, Wszolek ZK, Yamada T. Alterations of T-lymphocyte populations in Parkinson disease. Park Relat Disord. 2005; 11(8): 493–8. DOI:https://doi.org/10.1016/j.parkreldis.2005.07.005
Joshi N, Singh S. Updates on immunity and inflammation in Parkinson disease pathology. Vol. 96, Journal of Neuroscience Research. 2018; p. 379–90. DOI:https://doi.org/10.1002/jnr.24185
Álvarez-Luquín D, Arce-Sillas A, Leyva-Hernández J, Sevilla-Reyes E, Boll M, Montes-Moratilla E, et al. Regulatory impairment in untreated Parkinson’s disease is not restricted to Tregs other regulatory populations are also involve. J Neuroinflammation. 2019; 16 (1): 212. DOI:https://doi.org/10.1186/s12974-019-1606-1
Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in parkinson’s disease. In: Rossen Donev, editor. Advances in Protein Chemistry and Structural Biology. Oxford: Academic Press Inc; 2012. 69–132.
Saunders JAH, Estes KA, Kosloski LM, Allen HE, Dempsey KM, Torres-Russotto DR, et al. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J Neuroimmune Pharmacol. 2012; 7(4): 927–38. DOI:https://doi.org/10.1007/s11481-012-9402-z
Bertsias GK, Ioannidis JPA, Aringer M, Bollen E, Bombardieri S, Bruce IN, et al. EULAR recommendations for the management of systemic lupus erythematosus. Report of a Task Force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics. Ann Rheum Dis. 2010; 69(12): 2074–82. DOI: http://dx.doi. org/10.1136/ard.2007.070367
Stevens CH, Rowe D, Morel-Kopp MC, Orr C, Russell T, Ranola M, et al. Reduced T helper and B lymphocytes in Parkinson’s disease. J Neuroimmunol. 2012; 252(1–2): 95–9. DOI:https://doi.org/10.1016/j.jneuroim.2012.07.015
Alonso Cánovas A, Luquin Piudo R, García Ruiz-Espiga P, Burguera JA, Campos Arillo V, Castro A, et al. Agonistas dopaminérgicos en la enfermedad de Parkinson. Neurologia; 2014: 29: 230–241. DOI: https://doi.org/10.1016/j. nrl.2011.04.012