2020, Number 2
<< Back Next >>
Odovtos-Int J Dent Sc 2020; 22 (2)
Ex Vivo Evaluation of a Restoration Protocol for Teeth with Simulated Incomplete Rhizogenesis
Retana-Lobo C, Reyes-Carmona J
Language: English
References: 42
Page: 97-111
PDF size: 828.21 Kb.
ABSTRACT
The use of phosphate buffered saline (PBS) as an intracanal medication triggers a biomineralization process within mineral trioxide aggregate (MTA) apical plugs during the apexification process in teeth with incomplete rhizogenesis. However, no consensus is available in the literature regarding a restorative protocol for this type of treatment. Thus, the objective of this study was to use scanning electron microscopy (SEM) to evaluate the processes of biomineralization and adhesion in a restorative protocol for teeth with simulated incomplete rhizogenesis.
Methodology: Root sections with a thickness of 2mm and cavities with a diameter of 2mm were used. The sections were randomly prepared and filled with the following materials: Group 1 (n=12), ProRoot MTA; and Group 2 (n=12): MTA Exp. Subsequently, the samples were immersed in PBS for 35 days. Every 5 days, the PBS was replaced, and the precipitates were collected, dried, and weighed. Two samples from each group were analyzed by SEM. Moreover, 24 single-rooted teeth were standardized, incomplete rhizogenesis was simulated, and 5-mm-long apical plugs were created with Pro Root MTA. As an intracanal medication, PBS was used for different periods of time: Group 1:48 h; Group 2:7 days; and Group 3:15 days. Then, fiberglass posts were cemented with the REBILDA
® Post System. The samples were prepared and analyzed by SEM.
Results: ProRoot MTA and MTA Exp effectively promoted the formation of carbonated apatite precipitates and biomineralization with dentin. ProRoot MTA yielded more carbonated apatite precipitates compared to MTA Exp (p=0.0536). The use of PBS as an intracanal medication for 7 and 15 days promoted intratubular mineralization (MIT), and treatment for 15 days was more effective (p
‹ 0.05). The REBILDA
® Post System effectively promoted the microimbrication of the adhesive system and the formation of resinous tags with lateral adhesive branches.
Conclusion: Apexification with MTA associated with the use of PBS as an intracanal medication for 15 days, in addition to the use of the REBILDA
® Post System, seems to be a feasible restorative protocol.
REFERENCES
Reyes-Carmona J. F., Felippe M. S., Felippe W. T. A phosphate-buffered saline intracanal dressing improves the biomineralization ability of mineral trioxide aggregate apical plugs. J Endod. 2010; 36 (10): 1648-1652.
Tay F. R., Pashley D. H., Rueggeberg F. A., Loushine RJ, Weller RN. Calcium phosphate phase transformation produced by the interaction of the portland cement component of white mineral trioxide aggregate with a phosphate-containing fluid. J Endod. 2007; 33 (11): 1347-1351.
Torabinejad M., Watson T. F., Ford T. R. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 1993; 19 (12): 591-595.
Torabinejad M., Chivian N. Clinical applications of mineral trioxide aggregate. J Endod. 1999; 25 (3): 197-205.
Sarkar N. K., Caicedo R., Ritwik P., Moiseyeva R., Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod. 2005; 31 (2): 97-100.
Torabinejad M., Rastegar A. F., Kettering J. D., Pitt Ford T. R. Bacterial leakage of mineral trioxide aggregate as a root-end filling material. J Endod. 1995; 21 (3): 109-112.
Sluyk S. R., Moon P. C., Hartwell G. R. Evaluation of setting properties and retention characteristics of mineral trioxide aggregate when used as a furcation perforation repair material. J Endod. 1998; 24 (11): 768-771.
Duarte M. A., Demarchi A. C., Yamashita J. C., Kuga M. C., Sde C. F. pH and calcium ion release of 2 root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003; 95 (3): 345-347.
Fridland M., Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod. 2003; 29 (12): 814-817.
Santos A. D., Moraes J. C., Araujo E. B., Yukimitu K, Filho WV. Physico-chemical properties of MTA and a novel experimental cement. Int Endod J. 2005; 38 (7): 443-447.
Torabinejad M., Higa R. K., McKendry D. J., Ford T. R. Dye leakage of four root end filling materials: effects of blood contamination. J Endod. 1994; 20 (4): 159-163.
Roy C. O., Jeansonne B. G., Gerrets T. F. Effect of an acid environment on leakage of root-end filling materials. J Endod. 2001; 27 (1): 7-8.
Tay F. R., Pashley D. H. Monoblocks in root canals: a hypothetical or a tangible goal. J Endod. 2007; 33 (4): 391-398.
Reyes-Carmona J. F., Felippe M. S., Felippe W. T. Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid. J Endod. 2009; 35 (5): 731-736.
Tay F. R., Pashley D.H. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials. 2008; 29 (8): 1127-1137.
Reyes-Carmona J. F., Felippe M. S., Felippe W. T. The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength. J Endod. 2010; 36 (2): 286-291.
Martin R. L., Monticelli F., Brackett W. W., Loushine R. J., Rockman R. A., Ferrari M. et al. Sealing properties of mineral trioxide aggregate orthograde apical plugs and root fillings in an in vitro apexification model. J Endod. 2007; 33 (3): 272-275.
Felippe W. T., Felippe M. C, Rocha M. J. The effect of mineral trioxide aggregate on the apexification and periapical healing of teeth with incomplete root formation. Int Endod J. 2006; 39 (1): 2-9.
Ross D., Esna F., Carlos E., Ramírez-Barrantes J. C. Resistencia de unión del sistema de postes REBILDA® con la dentina intrarradicular. ODOVTOS-Int J Dent Sci. 2017; 19 (2): 47-59.
Ferrari M., Mannocci F., Vichi A., Cagidiaco M. C., Mjor I. A. Bonding to root canal: structural characteristics of the substrate. Am J Dent. 2000;13 (5): 255-260.
Mjor I. A., Smith M. R., Ferrari M., Mannocci F. The structure of dentine in the apical region of human teeth. Int Endod J. 2001; 34 (5): 346-353.
Ferrari M. Fiber posts and endodontically treated teeth: a compendium of scientific and clinical perspectives. South Africa: Modern Dentistry Media; 2008.
van Meerbeek B., de Munck J., Yoshida Y., Inoue S., Vargas M., Vijay P. et al. Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent. 2003; 28 (3): 215-235.
Gwinnett A. J. Quantitative contribution of resin infiltration/hybridization to dentin bonding. Am J Dent. 1993;6 (1): 7-9.
Gwinnett A. J. Chemically conditioned dentin: a comparison of conventional and environmental scanning electron microscopy findings. Dent Mater. 1994; 10 (3): 150-155.
Prisco D., de Santis R., Mollica F., Ambrosio L., Rengo S., Nicolais L. Fiber post adhesion to resin luting cements in the restoration of endodontically-treated teeth. Oper Dent. 2003; 28 (5): 515-521.
Reill M. I., Rosentritt M., Naumann M., Handel G. Influence of core material on fracture resistance and marginal adaptation of restored root filled teeth. Int Endod J. 2008;41 (5): 424-430.
Ferrari M., Vichi A., Grandini S. Efficacy of different adhesive techniques on bonding to root canal walls: an SEM investigation. Dent Mater. 2001; 17 (5): 422-429.
Aparecida A. H., Fook M. V. L., dos Santos M. L., Guastaldi A. C. Estudo da influência dos íons K+, Mg2+, SO42-e CO32- na cristalização biomimética de fosfato de cálcio amorfo (ACP) e conversão a fosfato octacálcico (OCP). Quím Nova. 2007; 30 (4): 892-896.
Weng J., Liu Q., Wolke J. G., Zhang X., de Groot K. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Biomaterials. 1997; 18 (15): 1027-1035.
Khor K. A., Li H., Cheang P., Boey S. Y. In vitro behavior of HVOF sprayed calcium phosphate splats and coatings. Biomaterials. 2003; 24 (5): 723-735.
Yu S., Hariram K. P., Kumar R., Cheang P., Aik K. K. In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials. 2005; 26 (15): 2343-2352.
Tadic D., Peters F., Epple M. Continuous synthesis of amorphous carbonated apatites. Biomaterials. 2002; 23 (12): 2553-2559.
Martinez-Pérez C., Martinez-Villafane A., Romero-Garcia J. Formación de hidroxiapatita sobre una superficie polimérica por un método biomimético. Revi Mex Ing Bioméd. 2001; 21 (4): 137-141.
Hench L. L. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991; 74 (7): 1487-1510.
Zhao W., Wang J., Zhai W., Wang Z., Chang J. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials. 2005; 26 (31): 6113-6121.
Vichi A., Grandini S., Davidson C. L., Ferrari M. An SEM evaluation of several adhesive systems used for bonding fiber posts under clinical conditions. Dent Mater. 2002; 18 (7): 495-502.
Vichi A., Grandini S., Ferrari M. Comparison between two clinical procedures for bonding fiber posts into a root canal: a microscopic investigation. J Endod. 2002; 28 (5): 355-360.
Llena C., Garcia-Gallart M., Forner L., Ferrari M. Root canal adaptation and intra-tubular penetration of three fiber-post cementation systems. J Clin Exp Dent. 2018; 10 (12): e1198-e1204.
Nakabayashi N., Pashley D. H. Hybridization of dental hard tissues. Chicago: Quintessence; 1998.
Bachicha W. S., DiFiore P. M., Miller D. A., Lautenschlager E. P., Pashley D. H. Microleakage of endodontically treated teeth restored with posts. J Endod. 1998; 24 (11): 703-708.
Mannocci F., Ferrari M., Watson T. F. Microleakage of endodontically treated teeth restored with fiber posts and composite cores after cyclic loading: a confocal microscopic study. J Prosthet Dent. 2001; 85 (3): 284-291.