2020, Número 2
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2020; 22 (2)
Evaluación ex vivo de un protocolo de restauración para dientes con rizogénesis incompleta simulada
Retana-Lobo C, Reyes-Carmona J
Idioma: Ingles.
Referencias bibliográficas: 42
Paginas: 97-111
Archivo PDF: 828.21 Kb.
RESUMEN
El uso de solución salina tamponada con fosfato (PBS) como medicamento intracanal desencadena un proceso de biomineralización en los plugs apicales con agregado de trióxido mineral (MTA) durante el proceso de apexificación en dientes con rizogénesis incompleta. Sin embargo, no hay consenso disponible en la literatura sobre un protocolo restaurador para este tipo de tratamiento. Por lo tanto, el objetivo de este estudio fue utilizar microscopía electrónica de barrido (MEB) para evaluar los procesos de biomineralización y adhesión en un protocolo restaurador para dientes con rizogénesis incompleta simulada.
Metodología: Se utilizaron secciones de raíz con un espesor de 2mm y se realizaron cavidades con un diámetro de 2 mm. Las cavidades en las secciones se obturaron con: Grupo 1 (n=12), ProRoot MTA; y Grupo 2 (n=12): MTA Exp. Posteriormente, las muestras se sumergieron en PBS durante 35 días. Cada 5 días, se reemplazó el PBS y se recogieron los precipitados, se secaron y pesaron. Dos muestras de cada grupo fueron analizadas por MEB. Además, se estandarizaron 24 dientes de raíz única, se simuló la rizogénesis incompleta y se crearon tapones apicales de 5mm de longitud con Pro Root MTA. Como medicamento intracanal, se utilizó PBS durante diferentes períodos de tiempo: Grupo 1:48 h; Grupo 2:7 días; y Grupo 3:15 días. Posteriormente, los postes de fibra de vidrio se cementaron con el sistema de postes REBILDA
®. Las muestras fueron preparadas y analizadas por MEB.
Resultados: ProRoot MTA y MTA Exp promovieron efectivamente la formación de precipitados de apatita carbonatada y la biomineralización con dentina. ProRoot MTA produjo más precipitados de apatita carbonatada en comparación con MTA Exp (p=0.0536). El uso de PBS como medicamento intracanal durante 7 y 15 días promovió la mineralización intratubular (MIT), siendo el tratamiento durante 15 días más efectivo (p
‹0.05). El sistema de postes REBILDA
® promovió efectivamente la microimbricación del sistema adhesivo y la formación de tags resinosos.
Conclusión: La apexificación con MTA asociada con el uso de PBS como medicación intracanal durante 15 días, además del uso del sistema de postes REBILDA
®, parece ser un protocolo factible y eficaz en este tipo de tratamientos.
REFERENCIAS (EN ESTE ARTÍCULO)
Reyes-Carmona J. F., Felippe M. S., Felippe W. T. A phosphate-buffered saline intracanal dressing improves the biomineralization ability of mineral trioxide aggregate apical plugs. J Endod. 2010; 36 (10): 1648-1652.
Tay F. R., Pashley D. H., Rueggeberg F. A., Loushine RJ, Weller RN. Calcium phosphate phase transformation produced by the interaction of the portland cement component of white mineral trioxide aggregate with a phosphate-containing fluid. J Endod. 2007; 33 (11): 1347-1351.
Torabinejad M., Watson T. F., Ford T. R. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 1993; 19 (12): 591-595.
Torabinejad M., Chivian N. Clinical applications of mineral trioxide aggregate. J Endod. 1999; 25 (3): 197-205.
Sarkar N. K., Caicedo R., Ritwik P., Moiseyeva R., Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod. 2005; 31 (2): 97-100.
Torabinejad M., Rastegar A. F., Kettering J. D., Pitt Ford T. R. Bacterial leakage of mineral trioxide aggregate as a root-end filling material. J Endod. 1995; 21 (3): 109-112.
Sluyk S. R., Moon P. C., Hartwell G. R. Evaluation of setting properties and retention characteristics of mineral trioxide aggregate when used as a furcation perforation repair material. J Endod. 1998; 24 (11): 768-771.
Duarte M. A., Demarchi A. C., Yamashita J. C., Kuga M. C., Sde C. F. pH and calcium ion release of 2 root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003; 95 (3): 345-347.
Fridland M., Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod. 2003; 29 (12): 814-817.
Santos A. D., Moraes J. C., Araujo E. B., Yukimitu K, Filho WV. Physico-chemical properties of MTA and a novel experimental cement. Int Endod J. 2005; 38 (7): 443-447.
Torabinejad M., Higa R. K., McKendry D. J., Ford T. R. Dye leakage of four root end filling materials: effects of blood contamination. J Endod. 1994; 20 (4): 159-163.
Roy C. O., Jeansonne B. G., Gerrets T. F. Effect of an acid environment on leakage of root-end filling materials. J Endod. 2001; 27 (1): 7-8.
Tay F. R., Pashley D. H. Monoblocks in root canals: a hypothetical or a tangible goal. J Endod. 2007; 33 (4): 391-398.
Reyes-Carmona J. F., Felippe M. S., Felippe W. T. Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid. J Endod. 2009; 35 (5): 731-736.
Tay F. R., Pashley D.H. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials. 2008; 29 (8): 1127-1137.
Reyes-Carmona J. F., Felippe M. S., Felippe W. T. The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength. J Endod. 2010; 36 (2): 286-291.
Martin R. L., Monticelli F., Brackett W. W., Loushine R. J., Rockman R. A., Ferrari M. et al. Sealing properties of mineral trioxide aggregate orthograde apical plugs and root fillings in an in vitro apexification model. J Endod. 2007; 33 (3): 272-275.
Felippe W. T., Felippe M. C, Rocha M. J. The effect of mineral trioxide aggregate on the apexification and periapical healing of teeth with incomplete root formation. Int Endod J. 2006; 39 (1): 2-9.
Ross D., Esna F., Carlos E., Ramírez-Barrantes J. C. Resistencia de unión del sistema de postes REBILDA® con la dentina intrarradicular. ODOVTOS-Int J Dent Sci. 2017; 19 (2): 47-59.
Ferrari M., Mannocci F., Vichi A., Cagidiaco M. C., Mjor I. A. Bonding to root canal: structural characteristics of the substrate. Am J Dent. 2000;13 (5): 255-260.
Mjor I. A., Smith M. R., Ferrari M., Mannocci F. The structure of dentine in the apical region of human teeth. Int Endod J. 2001; 34 (5): 346-353.
Ferrari M. Fiber posts and endodontically treated teeth: a compendium of scientific and clinical perspectives. South Africa: Modern Dentistry Media; 2008.
van Meerbeek B., de Munck J., Yoshida Y., Inoue S., Vargas M., Vijay P. et al. Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent. 2003; 28 (3): 215-235.
Gwinnett A. J. Quantitative contribution of resin infiltration/hybridization to dentin bonding. Am J Dent. 1993;6 (1): 7-9.
Gwinnett A. J. Chemically conditioned dentin: a comparison of conventional and environmental scanning electron microscopy findings. Dent Mater. 1994; 10 (3): 150-155.
Prisco D., de Santis R., Mollica F., Ambrosio L., Rengo S., Nicolais L. Fiber post adhesion to resin luting cements in the restoration of endodontically-treated teeth. Oper Dent. 2003; 28 (5): 515-521.
Reill M. I., Rosentritt M., Naumann M., Handel G. Influence of core material on fracture resistance and marginal adaptation of restored root filled teeth. Int Endod J. 2008;41 (5): 424-430.
Ferrari M., Vichi A., Grandini S. Efficacy of different adhesive techniques on bonding to root canal walls: an SEM investigation. Dent Mater. 2001; 17 (5): 422-429.
Aparecida A. H., Fook M. V. L., dos Santos M. L., Guastaldi A. C. Estudo da influência dos íons K+, Mg2+, SO42-e CO32- na cristalização biomimética de fosfato de cálcio amorfo (ACP) e conversão a fosfato octacálcico (OCP). Quím Nova. 2007; 30 (4): 892-896.
Weng J., Liu Q., Wolke J. G., Zhang X., de Groot K. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Biomaterials. 1997; 18 (15): 1027-1035.
Khor K. A., Li H., Cheang P., Boey S. Y. In vitro behavior of HVOF sprayed calcium phosphate splats and coatings. Biomaterials. 2003; 24 (5): 723-735.
Yu S., Hariram K. P., Kumar R., Cheang P., Aik K. K. In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials. 2005; 26 (15): 2343-2352.
Tadic D., Peters F., Epple M. Continuous synthesis of amorphous carbonated apatites. Biomaterials. 2002; 23 (12): 2553-2559.
Martinez-Pérez C., Martinez-Villafane A., Romero-Garcia J. Formación de hidroxiapatita sobre una superficie polimérica por un método biomimético. Revi Mex Ing Bioméd. 2001; 21 (4): 137-141.
Hench L. L. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991; 74 (7): 1487-1510.
Zhao W., Wang J., Zhai W., Wang Z., Chang J. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials. 2005; 26 (31): 6113-6121.
Vichi A., Grandini S., Davidson C. L., Ferrari M. An SEM evaluation of several adhesive systems used for bonding fiber posts under clinical conditions. Dent Mater. 2002; 18 (7): 495-502.
Vichi A., Grandini S., Ferrari M. Comparison between two clinical procedures for bonding fiber posts into a root canal: a microscopic investigation. J Endod. 2002; 28 (5): 355-360.
Llena C., Garcia-Gallart M., Forner L., Ferrari M. Root canal adaptation and intra-tubular penetration of three fiber-post cementation systems. J Clin Exp Dent. 2018; 10 (12): e1198-e1204.
Nakabayashi N., Pashley D. H. Hybridization of dental hard tissues. Chicago: Quintessence; 1998.
Bachicha W. S., DiFiore P. M., Miller D. A., Lautenschlager E. P., Pashley D. H. Microleakage of endodontically treated teeth restored with posts. J Endod. 1998; 24 (11): 703-708.
Mannocci F., Ferrari M., Watson T. F. Microleakage of endodontically treated teeth restored with fiber posts and composite cores after cyclic loading: a confocal microscopic study. J Prosthet Dent. 2001; 85 (3): 284-291.