2019, Number 4
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2019; 35 (4)
Design of a multicolored flow cytometry panel for blood, ascites and ovarian tissue samples
Villegas VCA, Torres LG, Morejón MA, Arango PMC
Language: Spanish
References: 29
Page: 1-19
PDF size: 416.11 Kb.
ABSTRACT
Introduction: Epithelial ovarian cancer occupies the 6th place in incidence and mortality in women worldwide. In Cuba, it occupies the 5th place in incidence in females. This cancer is immunogenic and its malignant cells grow in interaction with multiple cells from immune system. Its clinical course depends largely on the type of inflammatory infiltrate accompanying the tumor. Cytology and histopathology are gold standard as diagnostic methods. However, flow cytometry emerges as a technology with greater sensitivity, objectivity and speed.
Objective: To design a multicolored flow cytometry panel to immunophenotype the lymphocytic infiltrate of three types of samples for patients with ovarian cancer.
Methods: An experimental design was carried out in vitro for the creation and evaluation of a multicolored flow cytometry panel in the Immunology laboratory of the National Institute of Oncology and Radiobiology of Cuba. The panel was designed in the blood of three healthy subjects; then it was optimized for blood in 33 healthy volunteers and blood, ascites and ovarian tumor tissue, from three patients with epithelial ovarian cancer. Several lymphocytes lineages were immunophenotypedin each sample.
Results: Eleven markers were selected for the immunophenotype and the panel was made up of four multiparameter cytometry tubes. The methodology created could be applied to the samples of ascites and tumor tissue without interferences and percentages of different lymphocyte subpopulations were obtained within the expected values.
Conclusions: The designed panel allowed immunophenotyping of lymphocytes in different types of ovarian cancer patient samples and reliable and reproducible results were obtained. This methodology could be employed for others diseases.
REFERENCES
MINSAP. Anuario estadístico de salud. 2017. La Habana, 2018. Revisado: (24/09/2018). Disponible en: www.sld.cu/sitios/dne
Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 2017;14:9-32.
Berek JS, Crum C, Friedlander M. Cancer of the ovary, fallopian tube, and peritoneum. Int J GynecolObstet. 2015;131:111-22.
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017;67(1):7-30.
Lukesova S, Vroblova2 V, Tosner J, KopeckyJ,Sedlakova I, Čermáková E, et al. Comparative study of various subpopulations of cytotoxic cells in blood and ascites from patients with ovarian carcinoma.ContempOncol (Pozn) 2015;19(4):290–99.
Zhang B, Chen F, Xu Q, Han L, Xu J, Gao L, et al. Revisiting ovarian cancer microenvironment:a friend or a foe?Protein Cell 2018, 9(8):674–92.
Kitamura T, Bin-Zhi Q, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15:73-86.
Wefers C, Duiveman-de Boer T, Yigit R, Zusterzeel PLM, van Altena AM, Massuger LFAG, et al. Survival of Ovarian Cancer Patients Is Independent of the Presence of DC and T Cell Subsets in Ascites. FrontImmunol. 2019;9:1-10.
Quijano S, Guzmán P, De los Reyes I, Córdoba M. Estudio de concordancia entre citología convencional y citometría de flujo en la identificación de infiltracionneoplástica del líquido cefalorraquídeo en pacientes con diagnóstico de leucemia aguda. UM 2016;57(2):163-70.
Wang L, Hoffman RA. Standardization, calibration, and control in flow cytometry. Curr Proto Cytom. 2017 Jan;79:1.3.1-1.3.27. doi: 10.1002/cpcy.14.
Cossarizza A, Chang HD, Radbruch A, Akdis M, Andrä I, Annunziato F, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 2017; 47:1584-797.
Lan C, Heindl A, Huang X, Xi S, Banerjee S, Liu J, Yuan Y. Quantitative histology analysis of the ovarian tumour microenvironment. Sci Rep. 2015;5:1-12.
Panizo A, Idoate MA. Doble marcaje en inmunohistoquímica. RevEsp Patol.1998;31(3):287-90.
World Medical Association. Declaration of Helsinki ethical principles for medical research involving human subjects. JAMA 2013;310(20):2191-94.
Pillai V, Dorman DM. Flow Cytometry of Nonhematopoietic Neoplasms. ActaCytol. 2016; 60:336-43.
Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y,et al. Standardizing Flow Cytometry Immunophenotyping analysis from the Human Immunophenotyping Consortium. Sci Rep. 2016 Feb;6:20686. doi: 10.1038/srep20686.
Mateus J, Lasso P, González JM, Puerta CJ, Cuellar A. Diseño de un panel multicolor para evaluar moléculas intracelulares y de superficie mediante citometría de flujo. Biomédicas 2013; 33:660-72.
Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med.2004;10(9):942-49.
Jang M, Poh-Yin Y, Hasegawa K, Ikeda Y, Fujiwara K, Fleming GF, et al. Characterization of T cell repertoire of blood, tumor, and ascites in ovarian cancer patients using next generation sequencing. Oncoimmunol. 2015;4(11):1-10.
Liang H, Chu X, Zhao J, Xing G, SI Y. Elevated peripheral blood B lymphocytes and CD3+CD4‑CD8‑T lymphocytes in patients with non‑small cell lung cancer: A preliminary study on peripheral immune profile. Oncol Lett. 2018;15:8387-95.
Apoil PA, Puissant-Lubrano B, Congy-Jolivet N, Peres M, Tkaczuk J, Roubinet F, et al. Reference values for T, B and NK human lymphocyte subpopulations in adults. Data Brief. 2017; 12:400-4.
Villegas-Valverde CA, Kokuina E, Breff C. Estimating normal Values of rare T-Lymphocyte populations in peripheral blood of healthy Cuban adults. MEDICC Review. 2018;20(4):20-6.
Kokuina E, Breff C, Villegas-Valverde CA, Mora-Díaz I. Normal values of T, B and NK lymphocytes subpopulations in peripheral blood of healthy Cuban adults. MEDICC Review.2019;21(2-3):16-21.
Johansson U, Bloxham D, Couzens S, Jesson J, Morilla R, Erber W, et al. Guidelines on the use of multicolour flow cytometry in thediagnosis of haematological neoplasms. Br J Haematol.2014 May;165(4):455-88. doi: 10.1111/bjh.12789.
Kovacsovics-Bankowski M, Chisholm L, Vercellini J, Tucker CG, Montler R, Haley D, et al.Detailed characterization of tumor infiltrating lymphocytes in two distinct human solidmalignancies show phenotypic similarities. J Immunother Cancer. 2014 Nov;2(1):38. doi: 10.1186/s40425-014-0038-9.
Hegde PS, Karanikas V, Evers S.The Where, the When, and the How of Immune Monitoring for Cancer Immunotherapies in the Era of Checkpoint Inhibition.Clin Cancer Res.2016;15;22(8):1865-74.
Matsuzaki J, Tsuji T, Chodon T, Ryan C, Koya RC, Odunsi K. A rare population of tumor antigen-specific CD4+CD8+ double-positive αβ T lymphocytes uniquely provide CD8-independent TCR genes for engineering therapeutic T cells. J Immunother Cancer. 2019;7:1-18.
Saraiva DP, Jacinto A, Borralho P, Braga S, Cabral MG. HLA-DR in cytotoxic T lymphocytes predicts breast vancer patients’ response to neoadjuvant chemotherapy. Front Immunol.2018; 9:2605. doi: 10.3389/fimmu.2018.02605
Kahraman DS, DinizG,Sayhan S, Sayar C, Ayaz D, Gokcu M, et al. The prognostic significance of pdl1 and foxp3 expressions in tumor cells and thetumor microenvironment of ovarian epithelial tumors. Int J ClinExpPathol. 2018;11(8):3884-90.