2012, Number 03-04
<< Back Next >>
Medicina & Laboratorio 2012; 18 (03-04)
Chronic kidney disease as measured by serum creatinine
Campuzano MG, Arbeláez GM, Villegas GI, Palacio PD
Language: Spanish
References: 165
Page: 109-136
PDF size: 675.89 Kb.
ABSTRACT
Chronic kidney disease is associated with an increased risk of end-stage renal disease,
cardiovascular diseases and death; hence, it is necessary to make a diagnosis in the early phases
of the disease. Many equations for estimating glomerular filtration rates are available for this
purpose, and are based on serum creatinine concentration. Although creatinine is not the ideal
analyte to gauge glomerular filtration rate, it will be used until there is extensive availability of other
markers, such as cystatin C. On these grounds, clinical laboratories must offer results with high
standards of quality control, and accordingly, they must measure serum creatinine with suitable
methods, previously standardized by reference measurement procedures. The aim of this module
is to assess early diagnosis of chronic kidney disease through serum creatinine quantification and
glomerular filtration rate estimation.
REFERENCES
National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39: S1-266.
Chadban SJ, Briganti EM, Kerr PG, Dunstan DW, Welborn TA, Zimmet PZ, et al. Prevalence of kidney damage in Australian adults: The AusDiab kidney study. Journal of the American Society of Nephrology: JASN 2003; 14: S131-138.
Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, et al. Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes. Kidney international 2007; 72: 247-259.
Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA: the journal of the American Medical Association 2007; 298: 2038-2047.
Xie Y, Chen X. Epidemiology, major outcomes, risk factors, prevention and management of chronic kidney disease in China. American journal of nephrology 2008; 28: 1-7.
Singh NP, Ingle GK, Saini VK, Jami A, Beniwal P, Lal M, et al. Prevalence of low glomerular filtration rate, proteinuria and associated risk factors in North India using Cockcroft-Gault and Modification of Diet in Renal Disease equation: an observational, crosssectional study. BMC nephrology 2009; 10: 4.
Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. The New England journal of medicine 2004; 351: 1296-1305.
Bang H, Vupputuri S, Shoham DA, Klemmer PJ, Falk RJ, Mazumdar M, et al. SCreening for Occult REnal Disease (SCORED): a simple prediction model for chronic kidney disease. Archives of internal medicine 2007; 167: 374-381.
Bang H, Mazumdar M, Newman G, Bomback AS, Ballantyne CM, Jaffe AS, et al. Screening for kidney disease in vascular patients: SCreening for Occult REnal Disease (SCORED) experience. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2009; 24: 2452-2457.
Marco MP, Muray S, Valdivielso JM, Fernandez E. Occult chronic kidney disease: discordance among different methods used to estimate glomerular filtration rate in a healthy population. Clinical nephrology 2009; 71: 475-481.
Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Annals of internal medicine 1996; 124: 627-632.
Kasiske BL, Lakatua JD, Ma JZ, Louis TA. A metaanalysis of the effects of dietary protein restriction on the rate of decline in renal function. American journal of kidney diseases : the official journal of the National Kidney Foundation 1998; 31: 954-961.
Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, Marcantoni C, et al. Proteinuria as a modifiable risk factor for the progression of non-diabetic renal disease. Kidney international 2001; 60: 1131- 1140.
Nardi E, Palermo A, Mule G, Cusimano P, Cottone S, Cerasola G. Impact of type 2 diabetes on left ventricular geometry and diastolic function in hypertensive patients with chronic kidney disease. Journal of human hypertension 2011; 25: 144-151.
Standards of medical care in diabetes-2011. Diabetes Care 2011; 34 Suppl 1:S11-61.
Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42: 1206-1252.
2003 European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. Journal of hypertension 2003; 21: 1011-1053.
Levin A, Djurdjev O, Barrett B, Burgess E, Carlisle E, Ethier J, et al. Cardiovascular disease in patients with chronic kidney disease: getting to the heart of the matter. American journal of kidney diseases: the official journal of the National Kidney Foundation 2001; 38: 1398-1407.
Duncan L, Heathcote J, Djurdjev O, Levin A. Screening for renal disease using serum creatinine: who are we missing? Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2001; 16: 1042-1046.
Ruilope LM, van Veldhuisen DJ, Ritz E, Luscher TF. Renal function: the Cinderella of cardiovascular risk profile. Journal of the American College of Cardiology 2001; 38: 1782-1787.
Collins AJ, Li S, Gilbertson DT, Liu J, Chen SC, Herzog CA. Chronic kidney disease and cardiovascular disease in the Medicare population. Kidney international. Supplement 2003; S24-31.
Ismail N, Neyra R, Hakim R. The medical and economical advantages of early referral of chronic renal failure patients to renal specialists. Nephrol Dial Transplant 1998; 13: 246-250.
Jelliffe RW, Jelliffe SM. Estimation of creatinine clearance from changing serum-creatinine levels. Lancet 1971; 2: 710.
Mawer GE, Lucas SB, Knowles BR, Stirland RM. Computer-assisted prescribing of kanamycin for patients with renal insufficiency. Lancet 1972; 1: 12-15.
Kampmann J, Siersbaek-Nielsen K, Kristensen M, Hansen JM. Rapid evaluation of creatinine clearance. Acta medica Scandinavica 1974; 196: 517-520.
Schwartz GJ, Haycock GB, Edelmann CM, Jr., Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976; 58: 259-263.
Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. Journal of the American Society of Nephrology : JASN 2009; 20: 629-637.
Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM. Estimation of glomerular filtration rate from plasma creatinine concentration in children. Archives of disease in childhood 1976; 51: 875-878.
Rowe JW, Andres R, Tobin JD, Norris AH, Shock NW. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. Journal of gerontology 1976; 31: 155-163.
Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31-41.
Keller F. Kidney function and age. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association 1987; 2: 382.
Walser M, Drew HH, Guldan JL. Prediction of glomerular filtration rate from serum creatinine concentration in advanced chronic renal failure. Kidney international 1993; 44: 1145-1148.
Nankivell BJ, Chapman JR, Allen RD. Predicting glomerular filtration rate after simultaneous pancreas and kidney transplantation. Clinical transplantation 1995; 9: 129-134.
Baracskay D, Jarjoura D, Cugino A, Blend D, Rutecki GW, Whittier FC. Geriatric renal function: estimating glomerular filtration in an ambulatory elderly population. Clinical nephrology 1997; 47: 222-228.
Bjornsson TD. Use of serum creatinine concentrations to determine renal function. Clinical pharmacokinetics 1979; 4: 200-222.
Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Annals of internal medicine 1999; 130: 461-470.
Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Annals of internal medicine 2003; 139: 137-147.
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Annals of internal medicine 2009; 150: 604-612.
Bokenkamp A, Domanetzki M, Zinck R, Schumann G, Byrd D, Brodehl J. Cystatin C--a new marker of glomerular filtration rate in children independent of age and height. Pediatrics 1998; 101: 875-881.
Grubb AO. Cystatin C--properties and use as diagnostic marker. Advances in clinical chemistry 2000; 35: 63-99.
Rule AD, Bergstralh EJ, Slezak JM, Bergert J, Larson TS. Glomerular filtration rate estimated by cystatin C among different clinical presentations. Kidney international 2006; 69: 399-405.
Herget-Rosenthal S, Bokenkamp A, Hofmann W. How to estimate GFR-serum creatinine, serum cystatin C or equations? Clinical biochemistry 2007; 40: 153-161.
Zahran A, El-Husseini A, Shoker A. Can cystatin C replace creatinine to estimate glomerular filtration rate? A literature review. American journal of nephrology 2007; 27: 197-205.
Rule AD, Lieske JC. Cystatin C Is More than GFR, and This May Be a Good Thing. Journal of the American Society of Nephrology : JASN 2011; 22: 795- 797.
Peralta CA, Katz R, Sarnak MJ, Ix J, Fried LF, De Boer I, et al. Cystatin C identifies chronic kidney disease patients at higher risk for complications. Journal of the American Society of Nephrology : JASN 2011; 22: 147-155.
Jeon YK, Kim MR, Huh JE, Mok JY, Song SH, Kim SS, et al. Cystatin C as an early biomarker of nephropathy in patients with type 2 diabetes. Journal of Korean medical science 2011; 26: 258-263.
Schumann L, Wustenberg PW. An improved method to determine renal function using inulin and paminohippurate (PAH) steady-state kinetic modeling. Clinical nephrology 1990; 33: 35-40.
Donker AJ, van der Hem GK, Sluiter WJ, Beekhuis H. A radioisotope method for simultaneous determination of the glomerular filtration rate and the effective renal plasma flow. The Netherlands journal of medicine 1977; 20: 97-103.
Sigman EM, Elwood CM, Knox F. The measurement of glomerular filtration rate in man with sodium iothalamate 131-I (Conray). Journal of nuclear medicine : official publication, Society of Nuclear Medicine 1966; 7: 60-68.
Elwood CM, Sigman EM. The measurement of glomerular filtration rate and effective renal plasma flow in man by iothalamate 125-I and iodopyracet 131-I. Circulation 1967; 36: 441-448.
Narayanan S, Appleton HD. Creatinine: a review. Clinical chemistry 1980; 26: 1119-1126.
Cohen EP, Lemann J, Jr. The role of the laboratory in evaluation of kidney function. Clinical chemistry 1991; 37: 785-796.
Crim MC, Calloway DH, Margen S. Creatine metabolism in men: urinary creatine and creatinine excretions with creatine feeding. J Nutr 1975; 105: 428- 438.
Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S. Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. The American journal of clinical nutrition 1983; 37: 478-494.
Davies DF, Shock NW. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. The Journal of clinical investigation 1950; 29: 496-507.
Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 1985; 33: 278-285.
Lindeman RD. Overview: renal physiology and pathophysiology of aging. Am J Kidney Dis 1990; 16: 275-282.
Lameire N, Wauters JP, Teruel JL, Van Biesen W, Vanholder R. An update on the referral pattern of patients with end-stage renal disease. Kidney international. Supplement 2002; 27-34.
Winkelmayer WC, Owen WF, Jr., Levin R, Avorn J. A propensity analysis of late versus early nephrolo gist referral and mortality on dialysis. Journal of the American Society of Nephrology: JASN 2003; 14: 486-492.
Kazmi WH, Obrador GT, Khan SS, Pereira BJ, Kausz AT. Late nephrology referral and mortality among patients with end-stage renal disease: a propensity score analysis. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association 2004; 19: 1808-1814.
Lameire N, Van Biesen W. The pattern of referral of patients with end-stage renal disease to the nephrologist-- a European survey. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 1999;14 Suppl 6:16-23.
Jungers P, Choukroun G, Robino C, Massy ZA, Taupin P, Labrunie M, et al. Epidemiology of endstage renal disease in the Ile-de-France area: a prospective study in 1998. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2000; 15: 2000-2006.
Alebiosu CO, Ayodele OE. The global burden of chronic kidney disease and the way forward. Ethnicity & disease 2005; 15: 418-423.
Culleton BF, Larson MG, Evans JC, Wilson PW, Barrett BJ, Parfrey PS, et al. Prevalence and correlates of elevated serum creatinine levels: the Framingham Heart Study. Archives of internal medicine 1999; 159: 1785-1790.
Clase CM, Garg AX, Kiberd BA. Prevalence of low glomerular filtration rate in nondiabetic Americans: Third National Health and Nutrition Examination Survey (NHANES III). Journal of the American Society of Nephrology : JASN 2002; 13: 1338-1349.
Gómez RA. Renal disease in Colombia. Ren Fail 2006; 28: 643-647.
Collins AJ, Kasiske B, Herzog C, Chavers B, Foley R, Gilbertson D, et al. Excerpts from the United States Renal Data System 2004 annual data report: atlas of end-stage renal disease in the United States. American journal of kidney diseases : the official journal of the National Kidney Foundation 2005; 45: A5- 7, S1-280.
Campens D, Buntinx F. Selecting the best renal function tests. A meta-analysis of diagnostic studies. International journal of technology assessment in health care 1997; 13: 343-356.
Eknoyan G. Chronic kidney disease definition and classification: no need for a rush to judgment. Kidney Int 2009; 75: 1015-1018.
Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Stamler J. End-stage renal disease in African-American and white men. 16-year MRFIT findings. JAMA 1997; 277: 1293-1298.
Hsu CY, Lin F, Vittinghoff E, Shlipak MG. Racial differences in the progression from chronic renal insufficiency to end-stage renal disease in the United States. J Am Soc Nephrol 2003; 14: 2902-2907.
Peralta CA, Lin F, Shlipak MG, Siscovick D, Lewis C, Jacobs DR, Jr., et al. Race differences in prevalence of chronic kidney disease among young adults using creatinine-based glomerular filtration rate-estimating equations. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association 2010; 25: 3934-3939.
Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving HH, et al. Nephropathy in diabetes. Diabetes Care 2004;27 Suppl 1:S79-83.
Asociación Colombiana de Diabetes, Centro Educativo de la Federación Internacional de Diabetes. Prevalencia de Diabetes en Colombia. Actualizado el 5 de mayo de 2012. Disponible en: http://www.asodiabetes. org/noticias_detalle.php?Id_Noticia=179&Id_ Categoria=5 Consultado en mayo 19 de 2012.
Varela EA. Aspectos epidemiológicos. Guías colombianas para el diagnóstico y tratamiento de la hipertensión arterial. Revista Colombiana de Cardiología 2007; 13 189-194.
Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782-787.
Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365: 217- 223.
Macisaac RJ, Jerums G. Diabetic kidney disease with and without albuminuria. Curr Opin Nephrol Hypertens 2011; 20: 246-257.
Gaspari F, Perico N, Remuzzi G. Measurement of glomerular filtration rate. Kidney Int Suppl 1997; 63: S151-154.
Levey AS. Measurement of renal function in chronic renal disease. Kidney Int 1990; 38: 167-184.
Chantler C, Garnett ES, Parsons V, Veall N. Glomerular filtration rate measurement in man by the single injection methods using 51Cr-EDTA. Clinical science 1969; 37: 169-180.
Lane BR, Poggio ED, Herts BR, Novick AC, Campbell SC. Renal function assessment in the era of chronic kidney disease: renewed emphasis on renal function centered patient care. J Urol 2009; 182: 435- 443; discussion 443-434.
Tobias GJ, Mc LR, Jr., Hopper J, Jr. Endogenous creatinine clearance. A valuable clinical test of glomerular filtration and a prognostic guide in chronic renal disease. N Engl J Med 1962; 266: 317-323.
Gowans EM, Fraser CG. Biological variation of serum and urine creatinine and creatinine clearance: ramifications for interpretation of results and patient care. Ann Clin Biochem 1988; 25 (Pt 3): 259-263.
Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000; 80: 1107-1213.
Pong S, Seto W, Abdolell M, Trope A, Wong K, Herridge J, et al. 12-hour versus 24-hour creatinine clearance in critically ill pediatric patients. Pediatr Res 2005; 58: 83-88.
El-Minshawy O, Saber RA, Osman A. 24-hour creatinine clearance reliability for estimation of glomerular filtration rate in different stages of chronic kidney disease. Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia 2010; 21: 686-693.
Robert S, Zarowitz BJ. Is there a reliable index of glomerular filtration rate in critically ill patients? DICP 1991; 25: 169-178.
Robert S, Zarowitz BJ, Peterson EL, Dumler F. Predictability of creatinine clearance estimates in critically ill patients. Crit Care Med 1993; 21: 1487-1495.
Schwartz GJ, Feld LG, Langford DJ. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. The Journal of pediatrics 1984; 104: 849-854.
Jones GR, Imam SK. Validation of the revised MDRD formula and the original Cockcroft and Gault formula for estimation of the glomerular filtration rate using Australian data. Pathology 2009; 41: 379-382.
Roblin I, De Sobarnitsky S, Basselin C, Vial F, Bard E, Dufrene I, et al. Estimated glomerular filtration rate for drug dose adjustment: Cockcroft and Gault or abbreviated MDRD equation? Clinical biochemistry 2009; 42: 111-113.
Lamb EJ, Webb MC, O’Riordan SE. Using the modification of diet in renal disease (MDRD) and Cockcroft and Gault equations to estimate glomerular filtration rate (GFR) in older people. Age and ageing 2007; 36: 689-692.
Kuan Y, Hossain M, Surman J, El Nahas AM, Haylor J. GFR prediction using the MDRD and Cockcroft and Gault equations in patients with end-stage renal disease. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2005; 20: 2394-2401.
Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, et al. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clinical chemistry 2006; 52: 5-18.
Jones GR. Estimating renal function for drug dosing decisions. The Clinical biochemist. Reviews / Australian Association of Clinical Biochemists 2011; 32: 81- 88.
García DL, y la Asociación Colombiana de Nefrología, el Ministerio de Protección Social, y la Fundación para la Investigación y Desarrollo de la Salud y la Seguridad Social (Fedesalud) editors. Guía para el manejo de la enfermedad renal crónica (ERC) basada en la evidencia. Bogotá, Colombia: 2005, p. 1-170.
The Modification of Diet in Renal Disease Study: design, methods, and results from the feasibility study. American journal of kidney diseases : the official journal of the National Kidney Foundation 1992; 20: 18- 33.
Stevens LA, Coresh J, Feldman HI, Greene T, Lash JP, Nelson RG, et al. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol 2007; 18: 2749-2757.
Fernández-Fresnedo G, de Francisco AL, Rodrigo E, Piñera C, Herráez I, Ruiz JC, et al. Insuficiencia renal oculta por valoración de la función renal mediante la creatinina sérica. Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia 2002; 22: 144-151.
Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. American journal of kidney diseases: the official journal of the National Kidney Foundation 2003; 41: 1-12.
Buitrago F, Calvo JI, Gomez-Jimenez C, Canon L, Robles NR, Angulo E. Comparación y concordancia de las ecuaciones de estimación de filtrado glomerular de Cockcroft-Gault y MDRD en el diagnóstico de enfermedad renal crónica oculta. Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia 2008; 28: 301-310.
Levey AS, Greene T, Kusek JW, Beck GJ. A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol 2000; 11 (Supl.): A08028.
National Kidney Disease Education Program. Suggestions for Laboratories. www.nkdep.nih.gov/labprofessionals.
Lopez-Suarez A, Beltran-Robles M, Elvira-Gonzalez J, Fernandez-Palacin F, Bascunana-Quirell A, Benitez-Del-Castillo J, et al. Comparison of the MDRD and the CKD-EPI equations to estimate the glomerular filtration rate in the general population. Medicina clinica 2010; 134: 617-623.
Schwartz GJ, Gauthier B. A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr 1985; 106: 522-526.
Hellerstein S, Alon U, Warady BA. Creatinine for estimation of glomerular filtration rate. Pediatr Nephrol 1992; 6: 507-511.
Seikaly MG, Browne R, Bajaj G, Arant BS, Jr. Limitations to body length/serum creatinine ratio as an estimate of glomerular filtration in children. Pediatr Nephrol 1996; 10: 709-711.
van Rossum LK, Mathot RA, Cransberg K, Zietse R, Vulto AG. Estimation of the glomerular filtration rate in children: which algorithm should be used? Pediatr Nephrol 2005; 20: 1769-1775.
Brion LP, Boeck MA, Gauthier B, Nussbaum MP, Schwartz GJ. Estimation of glomerular filtration rate in anorectic adolescents. Pediatr Nephrol 1989; 3: 16-21.
Hari P, Bagga A, Mahajan P, Lakshmy R. Effect of malnutrition on serum creatinine and cystatin C levels. Pediatr Nephrol 2007; 22: 1757-1761.
Hellerstein S, Berenbom M, DiMaggio S, Erwin P, Simon SD, Wilson N. Comparison of two formulae for estimation of glomerular filtration rate in children. Pediatr Nephrol 2004; 19: 780-784.
Mattman A, Eintracht S, Mock T, Schick G, Seccombe DW, Hurley RM, et al. Estimating pediatric glomerular filtration rates in the era of chronic kidney disease staging. J Am Soc Nephrol 2006; 17: 487-496.
Zappitelli M, Joseph L, Gupta IR, Bell L, Paradis G. Validation of child serum creatinine-based prediction equations for glomerular filtration rate. Pediatr Nephrol 2007; 22: 272-281.
Stevens LA, Schmid CH, Greene T, Zhang YL, Beck GJ, Froissart M, et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1,73 m2. American journal of kidney diseases : the official journal of the National Kidney Foundation 2010; 56: 486-495.
Matsushita K, Selvin E, Bash LD, Astor BC, Coresh J. Risk implications of the new CKD Epidemiology Collaboration (CKD-EPI) equation compared with the MDRD Study equation for estimated GFR: the Atherosclerosis Risk in Communities (ARIC) Study. American journal of kidney diseases : the official journal of the National Kidney Foundation 2010; 55: 648- 659.
Michels WM, Grootendorst DC, Verduijn M, Elliott EG, Dekker FW, Krediet RT. Performance of the Cockcroft-Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clinical journal of the American Society of Nephrology: CJASN 2010; 5: 1003-1009.
Stevens LA, Schmid CH, Zhang YL, Coresh J, Manzi J, Landis R, et al. Development and validation of GFR-estimating equations using diabetes, transplant and weight. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2010; 25: 449-457.
White CA, Akbari A, Doucette S, Fergusson D, Knoll GA. Estimating glomerular filtration rate in kidney transplantation: is the new chronic kidney disease epidemiology collaboration equation any better? Clinical chemistry 2010; 56: 474-477.
Florkowski CM, Chew-Harris JS. Methods of Estimating GFR - Different Equations Including CKDEPI. The Clinical biochemist. Reviews / Australian Association of Clinical Biochemists 2011; 32: 75-79.
Hossain MA, Elmoselhi H, Elshorbagy AA, Shoker A. The Sask formula to estimate glomerular filtration rate in renal transplant patients. Nephron. Clinical practice 2011; 117: c135-150.
Kurella Tamura M, Anand S, Li S, Chen SC, Whaley- Connell AT, Stevens LA, et al. Comparison of CKD awareness in a screening population using the Modification of Diet in Renal Disease (MDRD) study and CKD Epidemiology Collaboration (CKD-EPI) equations. Am J Kidney Dis 2011; 57: S17-23.
McFarlane SI, McCullough PA, Sowers JR, Soe K, Chen SC, Li S, et al. Comparison of the CKD Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) study equations: prevalence of and risk factors for diabetes mellitus in CKD in the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis 2011; 57: S24-31.
O’Callaghan CA, Shine B, Lasserson DS. Chronic kidney disease: a large-scale population-based study of the effects of introducing the CKD-EPI formula for eGFR reporting. BMJ Open 2011; 1: e000308.
Stevens LA, Claybon MA, Schmid CH, Chen J, Horio M, Imai E, et al. Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney international 2011; 79: 555-562.
Stevens LA, Li S, Kurella Tamura M, Chen SC, Vassalotti JA, Norris KC, et al. Comparison of the CKD Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) study equations: risk factors for and complications of CKD and mortality in the Kidney Early Evaluation Program (KEEP). Am J Kidney Dis 2011; 57: S9-16.
Ruggenenti P, Gaspari F, Cannata A, Carrara F, Cella C, Ferrari S, et al. Measuring and estimating GFR and treatment effect in ADPKD patients: results and implications of a longitudinal cohort study. PLoS One 2012; 7: e32533.
Kitiyakara C, Yamwong S, Vathesatogkit P, Chittamma A, Cheepudomwit S, Vanavanan S, et al. The impact of different GFR estimating equations on the prevalence of CKD and risk groups in a Southeast Asian cohort using the new KDIGO guidelines. BMC Nephrol 2012; 13: 1.
Arora P, Rajagopalan S, Patel N, Nainani N, Venuto RC, Lohr JW. The MDRD equation underestimates the prevalence of CKD among blacks and overestimates the prevalence of CKD among whites compared to the CKD-EPI equation: a retrospective cohort study. BMC Nephrol 2012; 13: 4.
Cha RH, Lee CS, Lim YH, Kim H, Lee SH, Yu KS, et al. Clinical usefulness of serum cystatin C and the pertinent estimation of glomerular filtration rate based on cystatin C. Nephrology 2010; 15: 768-776.
Xirouchakis E, Marelli L, Cholongitas E, Manousou P, Calvaruso V, Pleguezuelo M, et al. Comparison of cystatin C and creatinine-based glomerular filtration rate formulas with 51Cr-EDTA clearance in patients with cirrhosis. Clinical journal of the American Society of Nephrology : CJASN 2011; 6: 84-92.
Weinert LS, Camargo EG, Soares AA, Silveiro SP. Glomerular filtration rate estimation: performance of serum cystatin C-based prediction equations. Clin Chem Lab Med 2011; 49: 1761-1771.
Grubb A, Bjork J, Nyman U, Pollak J, Bengzon J, Ostner G, et al. Cystatin C, a marker for successful aging and glomerular filtration rate, is not influenced by inflammation. Scandinavian journal of clinical and laboratory investigation 2011; 71: 145-149.
Blufpand HN, Tromp J, Abbink FC, Stoffel-Wagner B, Bouman AA, Schouten-van Meeteren AY, et al. Cystatin C more accurately detects mildly impaired renal function than creatinine in children receiving treatment for malignancy. Pediatric blood & cancer 2011.
Krishnamurthy N, Arumugasamy K, Anand U, Anand CV, Aruna V, Venu G. Serum cystatin C levels in renal transplant recipients. Indian J Clin Biochem 2011; 26: 120-124.
Dhia RB, Hellara I, Harzallah O, Neffati F, Khochtali I, Mahjoub S, et al. Evaluation of the renal function in type 2 diabetes: clearance calculation or cystatin C? Ann Biol Clin (Paris) 2012; 70: 287- 294.
Astor BC, Shafi T, Hoogeveen RC, Matsushita K, Ballantyne CM, Inker LA, et al. Novel markers of kidney function as predictors of ESRD, cardiovascular disease, and mortality in the general population. Am J Kidney Dis 2012; 59: 653-662.
Schöttker B, Herder C, Muller H, Brenner H, Rothenbacher D. Clinical utility of creatinine- and cystatin C-based definition of renal function for risk prediction of primary cardiovascular events in patients with diabetes. Diabetes Care 2012; 35: 879-886.
Peake M, Whiting M. Measurement of serum creatinine-- current status and future goals. The Clinical biochemist. Reviews / Australian Association of Clinical Biochemists 2006; 27: 173-184.
Myers GL. Standardization of serum creatinine measurement: theory and practice. Scandinavian journal of clinical and laboratory investigation. Supplementum 2008; 241: 57-63.
Levey AS. Use of glomerular filtration rate measurements to assess the progression of renal disease. Semin Nephrol 1989; 9: 370-379.
Richards RK, Bjornsson TD, Waterbury LD. Rise in serum and urine creatinine after phenacemide. Clin Pharmacol Ther 1978; 23: 430-437.
Duggan E, Hoffman L, Baska RE, Lea K, Hellerstein S. Elevated serum creatinine levels in three patients treated with phenacemide. Drug Intell Clin Pharm 1986; 20: 225-228.
Cahen R, Martin A, Francois B, Baltassat P, Louisot P. Creatinine metabolism impairment by an anticonvulsant drug, phenacemide. Ann Pharmacother 1994; 28: 49-51.
Van Biesen W, Vanholder R, Veys N, Verbeke F, Delanghe J, De Bacquer D, et al. The importance of standardization of creatinine in the implementation of guidelines and recommendations for CKD: implications for CKD management programmes. Nephrol Dial Transplant 2006; 21: 77-83.
Coresh J, Astor BC, McQuillan G, Kusek J, Greene T, Van Lente F, et al. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 2002; 39: 920-929.
Murthy K, Stevens LA, Stark PC, Levey AS. Variation in the serum creatinine assay calibration: a practical application to glomerular filtration rate estimation. Kidney Int 2005; 68: 1884-1887.
Laterza OF, Price CP, Scott MG. Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem 2002;48:699-707.
Jaffé M. Uber den niederschlag, welchen pikrinsaure in normalen hrn erzeugt und uber eine neue reaccion des kreatinins. Physiol Chem 1886; 10: 391-400.
Datta P, Graham GA, Schoen I. Interference by IgG paraproteins in the Jaffe method for creatinine determination. Am J Clin Pathol 1986; 85: 463-468.
Blank DW, Nanji AA. Ketone interference in estimation of urinary creatinine; effect on creatinine clearance in diabetic ketoacidosis. Clin Biochem 1982; 15: 279-280.
Siest G, Appel W, Blijenberg GB, Capolaghi B, Galteau MM, Heusghem C, et al. Drug interference in clinical chemistry: studies on ascorbic acid. J Clin Chem Clin Biochem 1978; 16: 103-110.
Da Rin G, Amici G, Virga G, Bardin C, Calzavara P, Bocci C. Correction of glucose concentration interference on Jaffe kinetic creatinine assay in peritoneal dialysis. Am J Nephrol 1995; 15: 480-487.
Knapp ML, Hadid O. Investigations into negative interference by jaundiced plasma in kinetic Jaffe methods for plasma creatinine determination. Ann Clin Biochem 1987;24 ( Pt 1):85-97.
Boot S, LaRoche N, Legg EF. Elimination of bilirubin interference in creatinine assays by routine techniques: comparisons with a high performance liquid chromatography method. Ann Clin Biochem 1994; 31 ( Pt 3): 262-266.
Chan MH, Ng KF, Szeto CC, Lit LC, Chow KM, Leung CB, et al. Effect of a compensated Jaffe creatinine method on the estimation of glomerular filtration rate. Ann Clin Biochem 2004; 41: 482-484.
Tanganelli E, Prencipe L, Bassi D, Cambiaghi S, Murador E. Enzymic assay of creatinine in serum and urine with creatinine iminohydrolase and glutamate dehydrogenase. Clin Chem 1982; 28: 1461-1464.
Toffaletti J, Blosser N, Hall T, Smith S, Tompkins D. An automated dry-slide enzymatic method evaluated for measurement of creatinine in serum. Clin Chem 1983; 29: 684-687.
Fossati P, Prencipe L, Berti G. Enzymic creatinine assay: a new colorimetric method based on hydrogen peroxide measurement. Clin Chem 1983; 29: 1494-1496.
Ogawa J, Nirdnoy W, Tabata M, Yamada H, Shimizu S. A new enzymatic method for the measurement of creatinine involving a novel ATP-dependent enzyme, N-methylhydantoin amidohydrolase. Biosci Biotechnol Biochem 1995; 59: 2292-2294.
Siekmann L. Determination of creatinine in human serum by isotope dilution-mass spectrometry. Definitive methods in clinical chemistry, IV. J Clin Chem Clin Biochem 1985; 23: 137-144.
Stöckl D, Reinauer H. Candidate reference methods for determining target values for cholesterol, creatinine, uric acid, and glucose in external quality assessment and internal accuracy control. I. Method setup. Clin Chem 1993; 39: 993-1000.
Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, et al. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clinical chemistry 2007; 53: 766- 772.
HDCN Channels. http://www.hdcn.com/calcf/gfr. htmhttp://www.hdcn.com/calcf/gfr.htm, consultado el 12 de dicembre de 2011.
Nephromatic. http://www.nephromatic.com/egfr.php, consultado el 12 de diciembre de 2011