2020, Number 2
<< Back Next >>
Med Int Mex 2020; 36 (2)
Behaviour of heart rate and blood gas analysis based on dynamical systems
Medina-Araujo SM, Rodríguez-Velásquez JO, Prieto-Bohórquez SE
Language: Spanish
References: 30
Page: 153-158
PDF size: 177.10 Kb.
ABSTRACT
Background: Nonlinear dynamics have allowed the development of diagnostic
methodologies of cardiac dynamics and the evaluation of the behavior of different
hemodynamic variables.
Objective: To characterize the chaotic behavior of the heart rate and parameters of
the blood gases of patients of the intensive care unit within the framework of dynamic
systems theory.
Material and Method: A study was done including clinical reports of blood gases
and continuous electrocardiographic records were selected from patients of the intensive
care unit. Heart rate, pressure of arterial and venous carbon dioxide, and venous
oxygen saturation were systematized. Then, chaotic attractors of these variables were
generated in the delay map, and the maximum and minimum values of the attractors
were established.
Results: There were included 25 clinical reports. The minimum and maximum
values of the attractors of venous oxygen saturation were between 22.1 and 97.3%.
The minimum and maximum values of the attractors of PaCO
2 were between 17 and
97.9 mmHg. The minimum and maximum values of the attractors of PvCO
2 ranged
from 14.4 to 64.1 mmHg. Heart rate values were found between 62 and 210 lat/min.
Conclusions: It was possible to characterize the chaotic behavior of the parameters
of blood gases and heart rate, in the context of dynamic systems theory.
REFERENCES
Devaney R. A first course in chaotic dynamical systems theory and experiments. Estados Unidos: Addison- Wesley, 1992.
Peitgen H, Jurgens H, Saupe D. Strange attractors, the locus of chaos. In: Chaos and Fractals: New Frontiers of Science. Estados Unidos: Springer-Verlag, 1992;655-768.
Mandelbrot B. The fractal geometry of nature. España, Freeman, 2000.
Mandelbrot B. ¿Cuánto mide la costa de Gran Bretaña? En: Los Objetos Fractales. España, 2000;27-50.
Parrillo J, Dellinger RP. Critical Care Medicine. Estados Unidos, Elsevier, 2019.
Mangas A, Oliver P, Casitas R, Laorden D. Indicaciones e interpretación diagnóstica de la gasometría arterial. Medicine. 2018;12:3849-3908. DOI: 10.1016/j.med.2018.10.025.
von Auenmueller K, Christ M, Sasko BM, Trappe HJ. The value of arterial blood gas parameters for prediction of mortality in survivors of out-of-hospital cardiac arrest. J Emerg Trauma Shock 2017;10:134-139. DOI: 10.4103/ JETS.JETS_146_16.
Godoy MF. Nonlinear analysis of heart rate variability: A comprehensive review. J Cardiol Ther 2016;3:528-33.
Goldberger A, Amaral L, Hausdorff JM, Ivanov P, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. PNAS. 2002;99:2466-2472.
Rodríguez J, Prieto S, Domínguez D, Melo M, Mendoza F, Correa C, et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. J Med Med Sci 2013;4:370-381.
Razi E, Nasiri O, Akbari H, Razi A. Correlation of arterial blood gas measurements with venous blood gas values in mechanically ventilated patients. Tanaffos 2012;11:30-35.
Masip J, De Mendoza D, Planas K, Páez J, Sanchez B, Cancio B. Peripheral venous blood gases and pulse-oximetry in acute cardiogenic pulmonary oedema. Eur Heart J Acute Cardiovasc Care 2012;1:275-280.
Treger R, Pirouz S, Kamangar N, Corry D. Agreement between central venous and arterial blood gas measurements in the intensive care unit. Clin J Am Soc Nephrol 2010;5:390-394.
Geoffrey B. Preanalytical considerations in blood gas analysis. Biochem Med (Zagreb) 2013;23:19-27.
Küme T, Rıza A, Solak A, Tuğlu B, Çinkooğlu B, Çoker C. The effects of different syringe volume, needle size and sample volume on blood gas analysis in syringes washed with heparin. Biochem Med (Zagreb) 2012;22:189-201.
Rodríguez J, Prieto S, Correa C, Domínguez D, Pardo J, Mendoza F, et al. Clinic application of a cardiac diagnostic method based on dynamic systems theory. Res J Cardiol 2017;10:1-7. DOI: 10.3923/rjc.2017.1.7.
Garfinkel A. A mathematics for physiology. Am J Physiol 1983;245:R455-R466.
Schumacher A. Linear and nonlinear approaches to the analysis of R-R interval variability. Biol Res Nurs 2004;5:211-21.
Barbieri R, Scilingo EP, Valenza G. Complexity and nonlinearity in cardiovascular signals. Suiza: Springer, 2017.
Scaffeta N, Moon R, West B. Fractal response of physiological signals to stress conditions, environmental changes, and neurodegenerative diseases. Complexity 2007;12:12-17. https://doi.org/10.1002/cplx.20183.
Ghorbani M, Jonckheere EA, Bogdan P. Gene expression is not random: scaling, long-range cross-dependence, and fractal characteristics of gene regulatory networks. Front Physiol 2018;9:1446. DOI: 10.3389/fphys.2018.01446.
Satti R, Abid NUH, Bottaro M, de Rui M, Garrido M, Raufoy MR. The application of the extended poincaré plot in the analysis of physiological variabilities. Front Physiol 2019;10:116. DOI: 10.3389/fphys.2019.00116.
Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Phil Trans R Soc 2009;367A, 277-296.
Bishop DG, Wise RD, Lee C, von Rahden RP, Rodseth RN. Heart rate variability predicts 30-day all-cause mortality in intensive care units. South Afr J Anaesth Analg 2016;22(4):125- 128. DOI: 10.1080/22201181.2016.1202605.
Wu, L, Jiang Z, Li C, Shu M. Prediction of heart rate variability on cardiac sudden death in heart failure patients: A systematic review. Int J Cardiol 2014;174(3):857-860. DOI: 10.1016/j.ijcard.2014.04.176.
Einstein A. Sobre la teoría de la relatividad y otras aportaciones científicas. Madrid: Sarpe; 1983;23-32.
Rodríguez J, Prieto S, Correa C, Bernal P, Puerta G, Vitery S, et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Medical Physics 2010;10:1.
Rodríguez J. Binding to class ii HLA theory: probability, combinatory and entropy applied to peptide sequences. Inmunología 2008; 27(4):151-166. DOI: 10.1016/S0213- 9626(08)70064-7.
Rodríguez JO. Spatio-temporal probabilistic prediction of appearance and duration of malaria outbreak in municipalities of Colombia. 9 J Phys Conf Ser 2019;1160:012018. DOI: 10.1088/1742-6596/1160/1/012018.
Rodríguez J, Prieto S, Correa C, Melo M, Domínguez D, Olarte N, et al. Prediction of CD4+ cells counts in HIV/AIDS patients based on sets and probability theories. Curr HIV Res 2018;16:416-424. DOI: 10.2174/1570162X17666190 306125819.