2019, Number 2
<< Back Next >>
Rev Cubana Med Trop 2019; 71 (2)
Proteolysis assessment in isolated Plasmodium falciparum living cells at the asexual blood stages
Rojas L, Budu A, El Chamy MS, Melo PS, Gomes SMM, Carmona AK, Gazarini ML, Alonso RM
Language: English
References: 28
Page: 1-11
PDF size: 397.78 Kb.
ABSTRACT
It has been demonstrated that proteases play crucial roles in Plasmodium falciparum infection and therefore have been considered as targets for the development of new therapeutic drugs. The aim of this study was to describe the specific proteolytic activity profile in all blood stages of P. falciparum isolated parasites in order to explore new antimalarial options. For this purpose, we used the fluorogenic substrate Z-Phe-Arg-MCA (Z: carbobenzoxy, MCA: 7-amino-4-methyl coumarine) and classic inhibitors for the different classes of proteolytic enzymes, such as phenylmethylsulfonyl fluoride (PMSF), 1.10-phenantroline, pepstatin A and E64 to study the inhibition profiles. As expected, due to the high metabolic activity in mature stages, the substrate was mostly degraded in the trophozoite and schizont, with specific activities ~ 20 times higher than in early stages (merozoite/rings). The major actors in substrate hydrolysis were cysteine proteases, as confirmed by the complete hydrolysis inhibition with E64 addition. Proteolytic activity was also inhibited in the presence of PMSF in all but the schizont stage. However, PMSF inhibition was the result of unspecific interaction with cysteine proteases as demonstrated by reversion of inhibition by dithiotreitol (DTT), indicating that serine protease activity is very low or null. To our knowledge, this is the first report aiming to describe the proteolytic profile of P. falciparum isolated parasites at all the erythrocytic cycle stages. The results and protocol described herein can be useful in the elucidation of stage specific action of proteolysis-inhibiting drugs and aid in the development of antimalarial compounds with protease inhibitory activity.
REFERENCES
World Health Organization. World Malaria Report. Geneva: WHO; 2017.
Miller LH, Ackerman HC, Su X, Wellems T. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med. 2013;19(2):156-67.
Li H, Child M, Bogyo M. Proteases as regulators of pathogenesis: Examples from the Apicomplexa. Biochim Biophys Acta - Proteins Proteomics. 2012;1824(1):177-85.
Bozdech Z, Llina M, Pulliam BL, Wong ED, Zhu J, Derisi JL. The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum. PLoS Biol. 2003;1(1):85-100.
Deu E. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS Journal. 2017;284:2604-28.
Pattanaik P, Jain B, Ravindra G, Gopi HN, Pal PP, Balaram H, et al. Stage-specific profiling of Plasmodium falciparum proteases using an internally quenched multispecificity protease substrate. Biochem Biophys Res Commun. 2003;309(4):974-9.
Caroselli EE, Assis DM, Barbiéri CL, Júdice WAS, Juliano MA, Gazarini ML, et al. Leishmania (L.) amazonensis peptidase activities inside the living cells and in their lysates. Mol Biochem Parasitol. 2012;184(2):82-9.
Nogueira Da Cruz L, Alves E, Leal MT, Juliano MA, Rosenthal PJ, Juliano L, et al. FRET peptides reveal differential proteolytic activation in intraerythrocytic stages of the malaria parasites Plasmodium berghei and Plasmodium yoelii. Int J Parasitol. 2011;41(3):363-72.
Gomes MM, Budu A, Ventura PDS, Bagnaresi P, Cotrin SS, Cunha RLOR, et al. Specific calpain activity evaluation in Plasmodium parasites. Anal Biochem. 2014;468:22-7.
El-Chamy S, Melo P, Varotti FP, Gazarini ML, Cunha RLOR, Carmona AK. Hypervalent organotellurium compounds as inhibitors of P. falciparum calcium-dependent cysteine proteases. Parasitol Int. 2016;65(1):20-2.
González-Bacerio J, El Chamy S, Méndez Y, Pascual I, Florent I, Melo PMS, et al. KBE009 : An antimalarial bestatin-like inhibitor of the Plasmodium falciparum M1 aminopeptidase discovered in an Ugi multicomponent reaction-derived peptidomimetic library. Bioorg Med Chem. 2017;25:4628-36.
Wu Y, Wang X, Liu X, Wang Y. Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res. 2003;13(4):601-16.
Shenai BR, Sijwali PS, Singh A, Rosenthal PJ. Characterization of native and recombinant falciapain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem. 2000;275:29000-10.
Sijwali P, Koo J, Singh N, Rosenthal P. Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol. 2006;150:96-106.
Walliker D, Quakyi IA, Wellems TE, McCutchan TF, Szarfman A, London WT, et al. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science. 1987;236:1661-6.
Trager W, Jensen B. Human malaria parasites in continuous culture. Science. 1976;193(4254):673-5.
Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65(3):418-20.
Budu A, Gomes MM, Melo PM, El-Chamy S, Bagnaresi P, Azevedo MF, et al. Calmidazolium evokes high calcium fluctuation in Plasmodium falciparum. Cell Signal. 2016;28 (3):125-35.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
Cotrin SS, Gouvêa IE, Melo PMS, Bagnaresi P, Assis DM, Araújo MS, et al. Substrate specificity studies of the cysteine peptidases falcipain-2 and falcipain-3 from Plasmodium falciparum and demonstration of their kininogenase activity. Mol Biochem Parasitol. 2013;187(2):111-6.
Florens L, Washburn M, Raine D, Anthony R, Grainger M, Haynes D, et al. A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002;319:520-6.
Murata C, Goldberg D. Plasmodium falciparum falcilysin. A metalloprotease with dual specificity. J Biol Chem. 2003;278(39):38022-8.
McGowan S. Working in concert: The metalloaminopeptidases from Plasmodium falciparum. Curr Opin Struct Biol. 2013;23(6):828-35.
Beyer B, Johnson J, Chung A, Li T, Madabushi A, McKenna M, et al. Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries. Biochemistry. 2005;44:1768-79.
Sijwali P, Shenai B, Gut J, Singh A, Rosenthal P. Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3. Biochem J. 2001;360:481-9.
Whitaker R, Pérez-Villaseñor J. Chemical Modification of Papain I. Reaction with the Chloromethyl ketones of Phenylalanine and Lysine with Phenylmethylsulfonyl Fluoride. Arch Biochem Biophys. 1968;124:70-8.
Greenbaum DC, Baruch A, Grainger M, Bozdech Z, Medzihradszky K, Engel J, et al. A Role for the Protease Falcipain 1 in Host Cell Invasion by the Human Malaria Parasite. Science. 2002;298:2002-6.
Choi Y, Jung S, Cho P, Soh B, Zheng B, Kim S, et al. Confocal microscopic findings of cysteine protease calpain in Plasmodium falciparum. Exp Parasitol. 2010;124:341-5.