2019, Número 2
<< Anterior Siguiente >>
Rev Cubana Med Trop 2019; 71 (2)
Péptidos antimicrobianos en infecciones respiratorias multiresistentes
González-García M, Ständker L, Otero-González AJ
Idioma: Ingles.
Referencias bibliográficas: 49
Paginas: 1-16
Archivo PDF: 263.15 Kb.
RESUMEN
Los péptidos antimicrobianos son pequeñas moléculas catiónicas presentes en casi todos los
organismos vivos. Muestran actividad directa o indirecta (inmunomodulación) en una
amplia gama de microorganismos patógenos como miembros del arsenal humoral de la
inmunidad innata. En los mamíferos juegan un papel importante en las vías respiratorias.
Los péptidos antimicrobianos más abundantes en el tracto respiratorio son lisozima,
lactoferrina, histatinas, defensinas y catelicidinas. Las infecciones respiratorias y
pulmonares son combatidas, principalmente, por péptidos antimicrobianos como LL-37
contra bacterias gramnegativas, histatina 5 contra Candida albicans y péptidos humanos de
neutrófilos contra adenovirus, influenza y parainfluenza. Este artículo proporciona una
revisión sobre los péptidos antimicrobianos más importantes en el tracto respiratorio y su
empleo en la búsqueda de nuevos agentes eficaces contra microorganismos causantes de
infecciones respiratorias teniendo en cuenta la información publicada al respecto en
MedLine, Web of Science y Scopus en los últimos años.
REFERENCIAS (EN ESTE ARTÍCULO)
He X, Xie M, Li S, Ye J, Qi P, Qiang M, Xiaomei L, Baimao Z. Antimicrobial resistance in bacterial pathogens among hospitalized children with community acquired lower respiratory tract infections in Dongguan, China (2011.2016). BMC Infectious Diseases. 2017;17:614-23.
Zumla A, Memish ZA, Maeurer M, Bates M, Mwaba P, Al-Tawfiq J. Emerging novel and antimicrobial-resistant respiratory tract infections: new drug development and therapeutic options. The Lancet Infectious Disease. 2014;14:1136-49.
Chowdhary A, Agarwal K, Meis JF. Filamentous Fungi in Respiratory Infections. What Lies Beyond Aspergillosis and Mucormycosis? PLOS Pathogens. 2016. DOI:10.1371/journal.ppat.10054.
Otero-González AJ, Magalhaes BS, García-Villarino M, López-Abarrategui C, Sousa DA, Dias SC, et al. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB Journal. 2010; 24:1320-34.
Guani-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Teran LM. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol. 2010;135:1-11.
Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resistance Updates. 2016;26:43-57.
Beisswenger C, Bals R. Antimicrobial peptides in lung inflammation. Chem Immunol Allergy. 2005;86:55-71.
Hiemstra PS. Defensins and cathelicidins in inflammatory lung disease: beyond antimicrobial activity. Biochem Soc Trans. 2006;34:276-8.
Yount, NY, Andrés MT, Fierro JF, Yeaman MR. The gamma-core motif correlates with antimicrobial activity in cysteine-containing kaliocin-1 originating from transferrins. Biochim Biophys Acta. 2007;1768(11):2862-72.
Yan H, Hancock RE. Synergistic interactions between mammalian antimicrobial defense peptides. Antimicrob. Agents Chemother. 2001;45:1558-60.
Patrzykat A, Douglas SE. Gone gene fishing: how to catch novel marine antimicrobials. Trends Biotechnol. 2003;21:362-9.
González García M, San Juan J, Morales FE, Otero A. Antimicrobial peptides: therapeutic potentials. Rev Cubana Med Trop. 2017;69.
Grubor B, Meyerholz DK, Ackermann MR. Collectins and Cationic Antimicrobial Peptides of the Respiratory Epithelia. Vet Pathol. 2006;43:595-612.
Ganz T. Antimicrobial polypeptides in host defense of the respiratory tract. J Clin Invest. 2002;109:693-7.
Devine DA. Antimicrobial peptides in defense of the oral and respiratory tracts. Molecular Immunology. 2003;40:431-43.
Khurshid Z, Naseem M, Sheikh Z, Najeeb S, Shahab S, Sohail M. Oral antimicrobial peptides: Types and role in the oral cavity. Saudi Pharmaceutical Journal. 2016;24:515-24.
Coya JM, Akinbi H, Saenz A, Yang L, Weaver T, Casals C. Natural Anti-Infective Pulmonary Proteins: In vivo Cooperative Action of Surfactant Protein SP-A and the Lung Antimicrobial Peptide SP-BN. J Immunol. 2015;195:1628-36.
Phillips DC. The three dimensional structure of an enzyme molecule. Scientific American. 966;215(5):78-90.
Baker HM, Baker CJ, Smith CA, Baker EN. Metal substitution in transferrins: specific binding of cerium (IV) revealed by the crystal structure of cerium-substituted human lactoferrin. J Biol Inorg Chem. 2000;5:692-8.
Wang W. Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs. Pharmaceuticals. 2013;6:728-58.
Grubor B, Meyerholz DK, Ackermann MR. Collectins and cationic antimicrobial peptides of the respiratory epithelia. Vet Pathol. 2006;43:595-612.
Kidd TJ, Mills M, Sá-Pessoa J, Dumigan A, Frank CG, Insua JL, et al. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol Med. 2017;9:430-47.
Gasink LB, Edelstein PH, Lautenbach E, Synnestvedt M, Fishman NO. Risk Factors and Clinical Impact of Klebsiella pneumoniae Carbapenemase-Producing K. pneumonia. Infect Control Hosp Epidemiol. 2009;30:1180-5.
Wu G, Wu P, Xue X, Yan X, Liu S, Zhang C, Shen, Z, et al. Application of S-thanatin, an antimicrobial peptide derived from thanatin, in mouse model of Klebsiella pneumoniae infection. Peptides. 2013;45:73-77.
Wu G, Wu H, Li L, Fan X, Ding J, Li, X, et al. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin. Biochemical and Biophysical Research Communications. 2010;395:31-5.
Barksdale SM, Hrifko EJ, van Hoek ML. Cathelicidin antimicrobial peptide from Alligator mississippiensis has antibacterial activity against multi-drug resistant Acinetobacter baumanii and Klebsiella pneumoniae. Dev Comp Immunol. 2017;70:135-44.
Duenas-Cuellar RA, Kushmerick C, Naves LA, Batista IFC, Guerrero-Vargas JA, Pires Jr. OR, et al. Cm38: A New Antimicrobial Peptide Active Against Klebsiella pneumoniae is Homologous to Cn11. Protein & Peptide Letters. 2015;22:164-72.
Li L, Nonejuie P, Munguia J, Hollands A, Olson J, Dam Q, et al. Azithromycin Synergizes with Cationic Antimicrobial Peptides to Exert Bactericidal and Therapeutic Activity Against Highly Multidrug-Resistant Gram-Negative Bacterial Pathogens. Ebio Medicine. 2015;2:690-8.
Gutsmann T. Interaction between antimicrobial peptides and mycobacteria. Biochimica et Biophysica Acta. 2016;1858:1034-43.
Sharma S, Verma I, Khuller GK. Therapeutic potential of human neutrophil peptide 1 against experimental tuberculosis. Antimicrob. Agents Chemother. 2001;45:639-40.
Tecle T, Tripathi S, Hartshorn KL. Defensins and cathelicidins in lung immunity. Innate Immunity. 2010;16:151-9.
Silva T, Magalhaes B, Maia S, Gomes P, Nazmi K, Bolscher JG, et al. Killing of Mycobacterium avium by lactoferricin peptides: improved activity of arginine- and Damino- acid-containing molecules. Antimicrob Agents Chemother. 2014;58:3461-7.
Kalita A, Verma I, Khuller GK. Role of human neutrophil peptide-1 as a possible adjunct to antituberculosis chemotherapy. J Infect Dis. 2004;190:1476-80.
Fattorini L, Gennaro R, Zanetti M, Tan D, Brunori L, Giannoni F, et al. In vitro activity of protegrin-1 and beta-defensin-1, alone and in combination with isoniazid, against Mycobacterium tuberculosis. Peptides. 2004;25:1075-7.
Sonawane A, Santos JC, Mishra BB, Jena P, Progida C, Sorensen OE, et al. Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cell Microbiol. 2011;13:1601-17.
Cortez KJ, Roilides E, Quiroz-Telles F, Meletiadis J, Antachopoulos C, Knudsen T, et al. Infections caused by Scedosporium spp. Clin Microbiol Rev. 2008;21:157-97.
Vargas-Montiel IL, Vargas-Caminos N, Molero M, Urbina M, Urdaneta A. Candida in biological human samples. Rev Invest Clin. 1999;40:245-55.
Li XS, Reddy MS, Baev D, Edgerton M. Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem. 2003;278:28553-61.
Kumar R, Chadha S, Saraswat D, Bajwa JS, Li RA, Conti HR, et al. Histatin 5 uptake by Candida albicans utilizes polyamine transporters Dur3 and Dur31 proteins. J Biol Chem. 2011;268:43748-58.
Van der Weerden NL, Bleackley MR, Anderson MA. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci. 2013;70:3545-70.
Cirioni O, Giacometti A, Barchiersi F, Scalise G. Inhibition of growth of Pneumocystis carinii by lactoferrins alone and in combination with pyremethamine, clarythromicin and minocycline. Journal of Antimicrobial Chemoterapy. 200046:577-82.
Vallon-Eberhard A, Makovitzki A, Beauvais A, Latge´ JP, Jung S, Shai Y. Efficient Clearance of Aspergillus fumigatus in Murine Lungs by an Ultrashort Antimicrobial Lipopeptide, Palmitoyl-Lys-Ala-DAla-Lys. Antimicrobial Agents and Chemotherapy. 2008;52:3118–26.
Skalickova S, Heger Z, Krejcova L, Pekarik V, Bastl K, Janda J, et al. Perspective of Use of Antiviral Peptides against Influenza Virus. Viruses. 2015;7:5428-42.
Newton A, Cardani A, Braciale T. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol. 2016;38:471-82.
Jones JC, Turpin EA, Bultmann H, Brandt CR, Schultz-Cherry S. Inhibition of Influenza Virus Infection by a Novel Antiviral Peptide That Targets Viral Attachment to Cells. Journal of Virology. 2006;80:11960-7.
Currie SM, Findlay EG, McHugh BJ, Mackellar A, Man T, Macmillan D, et al. The human cathelicidin LL-37 has antiviral activity against. Respiratory Syncytial Virus. 2013;8:e73659.
Budge PJ, Graham BS. Inhibition of respiratory syncytial virus by RhoA-derived peptides: implications for the development of improved antiviral agents targeting heparinbinding viruses. Journal of Antimicrobial Chemotherapy. 2004;54:299-302.
Cheepsattayakorn A, Cheepsattayakorn R. Parasitic Pneumonia and Lung Involvement. Bio Med Research International. 2014:ID 874021. doi10.1155/2014/87402
Wang G. Human Antimicrobial Peptides and Proteins. Pharmaceuticals. 2014;7:545- 594.