2019, Number 2
<< Back Next >>
Rev Cubana Med Trop 2019; 71 (2)
Effect of temperature and salinity on the eclosion and survival of Aedes aegypti (L) (Diptera: Culicidae) from Western Mexico
Galavíz-Parada JD, Vega-Villasante F, Marquetti MC, Guerrero-Galván S, Chong-Carrillo O, Navarrete HJL, Cupul-Magaña FG
Language: Spanish
References: 34
Page: 1-15
PDF size: 365.47 Kb.
ABSTRACT
Introduction: Aedes aegypti (L) (Diptera: Culicidae) is a cosmopolitan species and a vector of arboviruses. Variations in the temperature and salinity of the water affect eclosion and survival during the larval stages.
Objective: Evaluate the effect of different temperatures and salinities on the eclosion of eggs and the survival of larvae, pupae and adults in laboratory conditions.
Methods: Ae. aegypti larvae were collected from artificial reservoirs in a peri-urban area of Puerto Vallarta, Jalisco, Mexico, and maintained until the adult stage. The eggs obtained were subjected to eight temperatures (15, 17, 20, 25, 27, 30, 32 and 35 °C). Fifteen eggs were placed in quintuplicate and eclosion was evaluated for 96 h. One hundred eggs were placed with water adjusted to 0.3, 2, 5, 10, 15, 18 and 22 psu and eclosion was evaluated until 96 h. Additionally, stage IV larvae were used in quintuplicate, subjecting them to the same salinities and evaluating survival until 48 h. The effect of salinity on oviposition by females was determined by introducing containers with the same salinity into the entomological cages.
Results: 100 % eclosion was recorded at 24 and 48 h, whereas no eclosion occurred at a temperature of 35 °C. Salinities of 22 and 18 psu caused 100 % mortality at 24 h, whereas 50 % survived at a salinity of 15 psu. At concentrations of 2, 5 and 10 psu 100 % of the larvae survived until the adult stage. Survival of stage IV larvae in treatments 2, 5 and 10 was 100%, whereas in 15, 18 and 22 psu it fell to 50, 80 and 100 %, respectively (p˂ 0.05). The different salinities did not affect oviposition significantly. Eclosion only occurred at concentrations of 0.3, 2, 5 and 10 psu. Oviposited eggs at concentrations of 15, 18 and 22 psu did not eclose until they were transferred to fresh water, where eclosion percentages ranged between 80 % and 90 %.
Conclusions: Ae. aegypti embryos have great plasticity to endure drastic changes in temperature and salinity. Effective control of their populations should include inspection of ponds and reservoirs containing brackish water of up to 18 psu.
REFERENCES
Marquetti MC, Carranza MT, Silva ML, Bisset JL. Factores relacionados con la presencia de Aedes aegypti (Diptera: Culicidae) en dos regiones de Cuba. Rev Cubana Med Trop. 2010;64(2):112-8.
World Health Organization. Dengue guidelines for diagnosis, treatment, prevention and control. WHO/ HTM/NTD/DEN/2009.1 [cited 2017 July 15]. Available: http://whqlibdoc. who.int/publications/2009/9789241547871_eng.pdf
Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev. 1998;11:3:480-96.
Marquetti MC. Aspectos bioecológicos de importancia para el control de Aedes aegypti y otros culícidos en el ecosistema urbano [Tesis para optar por el grado de doctor en Ciencias de la Salud]. Ciudad de La Habana, Cuba: Instituto "Pedro Kourí"; 2006.
Chadee DD, Ward RA, Novak RJ. Natural habitats of Ae. aegypti in the Caribbean: A Review. J Am Mosq Control Assoc. 1998;14:5-11.
Bradley TJ. The physiology of osmoregulation in mosquitoes. Ann Rev Entomol. 1987;32:439-62.
Jetten TH, Focks DA. Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med and Hyg.1997;57(3):285-97.
Farnesi LC, Martins AJ, Valle D, Rezende GL. Embryonic development of Aedes aegypti (Diptera: Culicidae): influence of different constant temperatures. Mem Inst Oswaldo Cruz.2009;104(1):124-6.
Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res. 2010;85:328.
Mourya DT, Yadav P, Mishra AC. Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus. Am J Trop Med and Hyg. 2004;70:346-50.
Clark TM, Flis BJ, Remold SR. Differences in the effects of salinity on larval growth and developmental programs of a freshwater and a euryhaline mosquito species (Insecta: Diptera, Culicidae). J Exp Biol. 2004;207:2289-95.
Bradley TJ, Philips JE. Regulation of rectal secretion in saline-water mosquito larvae living in waters of diverse ionic composition. J Exp Biol. 1977;66 (1):83-96.
Ramasamy R, Jude PJ, Veluppillai T, Eswaramohan T, Surendran SN. Biological differences between brackish and fresh water-derived Aedes aegypti from two locations in the Jaffna peninsula of Sri Lanka and the implications for arboviral disease transmission. PLoS ONE. 2014;9:8:e104977.
Surendran SN, Jude PJ, Thabothiny V, Raveendran S, Ramasamy R. Pre-imaginal development of Aedes aegypti in brackish and fresh water urban domestic wells in Sri Lanka. J Vector Ecol. 2012;37(2):471-3.
Ibáñez-Bernal S, Martínez-Campos C. Clave para la identificación de larvas de mosquitos comunes en las áreas urbanas y suburbanas de la República Mexicana. Fol Entomol Mex. 1994;92:43-73.
Darsie RF, Ward RA. Identification and geographical distribution of the mosquitoes of North America, North of México. Mosquito Systematics Supplement. J Am Mosq Control Assoc. 1981;1:1-313.
Carpenter SJ, LaCasse WJ. Mosquitoes of north America (North of Mexico). Berkeley, Los Ángeles, London: University of California Press; 1974. p. 10-65.
Conde-Osorio AM. Estudio de la longevidad y el ciclo gonotrófico del Aedes (S.) aegypti (Linnaeus, 1762), cepa Girardot (Cundinamarca) en condiciones de laboratorio. [Tesis de Licenciatura en Biología]. Colombia: Facultad de Ciencias, Pontificia Universidad Javeriana; 2003.
19.Rueda LM, Patel KJ, Axtell RC, Stinner RE. Temperature-dependent development and survival of Culex quinquefascialus and Aedes aegypti (Diptera: Culicidae). J Med Entomol.1990;27:892-8. 20. De Carvalho SC, Martins Junior A de J, Lima JB, Valle D. Temperature influence on embryonic development of Anopheles albitarsis and Anopheles aquasalis. Mem Inst Oswaldo Cruz. 2002;97:1117-20.
Monteiro LCC, JRB De Souza, De Albuquerque ECMR.. Eclosion rate, development and survivorship of Aedes albopictus (Skuse) (Diptera: Culicidae) under different water temperatures. Neo Trop Entomol. 2007;36:966-71.
Sharpe Peter JH, De Michele Don W. Reaction Kinetics of Poikilotherm Development. J Theor Biol. 1977;64:649-70.
Bar-Zeev M. The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti (L.). Bull Entomol Res. 1958;49:157-63.
Tun-Lin W, Burkot TR, Kay BH. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Veterinary Entomol. 2000;14(1):31-7.
Monteiro, LCC, JRB, De Souza, and ECM R. De Albuquerque. Eclosion rate, development and survivorship of Aedes albopictus (Skuse) (Diptera: Culicidae) under different water temperatures. Neotrop Entomol. 2007;36:966-71.
Farnesi LC, Martins AJ, Valle D, Rezende GL. Embryonic development of Aedes aegypti (Diptera: Culicidae): influence of different constant temperatures. Mem Inst Oswaldo Cruz. 2009;104:124-6.
Delatte H, Gimonneau G, Triboire A, Fontenille D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian. Ocean. J Med Entomology. 2009;46(1):33-41. 28. Neves, DP, Espínola HN. Tigre-asiático: outro Aedes nos ameaça. Ciência Hoje. 1987;27(5):82.
Clark, TM, Flis BJ, Remold SK. Differences in the effects of salinity on larval growth and developmental programs of a freshwater and a euryhaline mosquito species (Insecta: Diptera, Culicidae). J Exp Biology. 2004;207:2289-e2295. 30. Surendran SN, Singh OP, Jude PJ, Ramasamy R. Genetic evidence for the presence of malaria vectors of the Anopheles sundaicus complex in Sri Lanka with morphological characteristics attributed to Anopheles subpictus species B. Malaria J. 2010;9:343.
Ramasamy R, Jude PJ, Veluppillai T, Eswaramohan T, Surendran SN. Biological differences between brackish and fresh water-derived Aedes aegypti from two locations in the Jaffna peninsula of Sri Lanka and the implications for arboviral disease transmission. PloS ONE. 2014;9:8:e104977.
Madushika KKWT, Dayananda PD, Fernando HSD, Fernando AL, De Silva H, Nanayakkara L,19. High Salinity Tolerance of Aedes to Breed in Brackish Waters around the Negombo Estuary. Proceedings of the International Forestry and Environment Symposium. Sri Lanka, 2016.
Stein M, Oria GI, Willener JA. Fluctuación estacional de Aedes aegypti en Chaco, Argentina. Rev Saú Públ.2005:39;559-64
Chadee DD. Key premises, a key to Aedes aegypti surveillance and control. Bull Entomol Res. 2004:94;201-7.
Kumar S, Wahab N, Warikoo R. Bioefficacy of Mentha piperita essential oil against dengue fever mosquito Aedes aegypti L. Asian Pac. J Trop Biomed. 2011:2;85-8.
Galavíz-Parada JD, Vega-Villasante F, Cupul-magaña FG, Navarrete-Heredia JL, Ruiz González E, Vargas-Ceballos MA, et al. Control químico y biológico de larvas de Aedes aegypti en la costa norte de Jalisco, México. Rev Cubana Med Trop. 2016;68(2):111-24.
Nesterkina M, Ulrich RB, Nurhayat T, Kravchenko I. Repellent activity of Monoterpenoid esteres with neurotransmitter amino acids against yellow fever mosquito. Aedes aegypti. Open Chemistry. 2018:16;95-8.