2019, Number 3
<< Back Next >>
Alerg Asma Inmunol Pediatr 2019; 28 (3)
Taste receptors in airways. Its importance in nasosinusal homeostasis
Sacre-Hazouri JA,Sacre L
Language: Spanish
References: 81
Page: 88-95
PDF size: 207.40 Kb.
ABSTRACT
The immune system acts as a sensory system to detect invading pathogens. Recent evidence suggests that the immune and taste systems utilize some of the same chemosensory receptors, namely bitter taste receptors of the taste receptor family 2 (T2R). T2Rs are G-protein coupled receptors originally identified in type 2 taste receptor cells of the tongue, but expression of these T2Rs is now known to extend to multiple organ systems, including the airway. Basic science and clinical studies are establishing T2Rs as part of a novel pathogen detection network in the airway, they are expressed in a variety of airway cell types and regulate multiple innate immune responses in both mice and humans. The T2R isoform, taste receptor family 2 isoform 38 protein (T2R38), which is expressed in motile cilia lining the sinonasal cavity (nose and sinuses), has recently been linked with sinonasal innate immunity, upper respiratory infection and chronic rhinosinusitis (CRS) demonstrating their importance into human disease and these very frequent diseases.
REFERENCES
Lee R, Cohen N. Role of the bitter taste receptor T2R38 in upper respiratory infection and chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2015; 15 (1): 14-20.
Freund J, LeeR. Taste receptors in the upper airway. World Journal of Otorhinolaryngology-Head Neck Surgery. 2018; 4: 67-76.
Patel N, Workman A, Cohen N. Role of taste receptors as sentinels of innate immunity in the upper airway. Journal of Pathogens. 2018; Article ID 9541987, 1-8. Disponible en: https://doi.org/10.1155/2018/9541987
Kinnamon SC. Taste receptor signalling from tongues to lungs. Acta Physiol (Oxf). 2012; 204: 158-168.
Lee RJ, Cohen NA. Bitter taste bodyguards. Sci Am. 2016; 314: 38e43.
Lee RJ, Cohen NA. Taste receptors in innate immunity. Cell Mol Life Sci. 2015; 72: 217-236.
Mennella JA, Spector AC, Reed DR, Coldwell SE. The bad taste of medicines: overview of basic research on bitter taste. Clin Ther. 2013; 35: 1225-1246.
Li F. Taste perception: from the tongue to the testis. Mol Hum Reprod. 2013; 19: 349-360.
Meyer-Gerspach AC, Wölnerhanssen B, Beglinger C. Gut sweet taste receptors and their role in metabolism. Front Horm Res. 2014; 42: 123-133.
Kokrashvili Z, Mosinger B, Margolskee RF. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J Clin Nutr. 2009; 90: 822S-825S.
Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans. 2005; 33: 302-305.
Margolskee RF. Teaching resources. Sensory systems: taste perception. Sci STKE. 2005; 2005: tr20.
Tordoff MG, Shao H, Alarcón LK et al. Involvement of T1R3 in calcium-magnesium taste. Physiol Genomics. 2008; 34: 338-348.
Ozdener MH, Subramaniam S, Sundaresan S et al. CD36- and GPR120-mediated Ca2þ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology. 2014; 146: 995-1005.
Cartoni C, Yasumatsu K, Ohkuri T et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci. 2010; 30: 8376-8382.
Khan NA, Besnard P. Oro-sensory perception of dietary lipids: new insights into the fat taste transduction. Biochim Biophys Acta. 2009; 1791: 149-155.
Sclafani A, Zukerman S, Glendinning JI, Margolskee RF. Fat and carbohydrate preferences in mice: the contribution of alpha-gustducin and Trpm5 taste-signaling proteins. Am J Physiol Regul Integr Comp Physiol. 2007; 293: R1504-R1513.
Laugerette F, Passilly-Degrace P, Patris B et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest. 2005; 115: 3177-3184.
Oka Y, Butnaru M, von Buchholtz L, Ryba NJ, Zuker CS. High salt recruits aversive taste pathways. Nature. 2013; 494: 472-475.
Oh DY, Talukdar S, Bae EJ et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010; 142: 687-698.
Iwata S, Yoshida R, Ninomiya Y. Taste transductions in taste receptor cells: basic tastes and moreover. Curr Pharm Des. 2014; 20: 2684-2692.
Lee RJ, Cohen NA. Bitter and sweet taste receptors in the respiratory epithelium in health and disease. J Mol Med (Berl). 2014; 92: 1235-1244.
Li D, Zhang J. Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire. Mol Biol Evol. 2014; 31: 303-309.
LossowK, Hübner S, Roudnitzky N et al. Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans. J Biol Chem. 2016; 291: 15358-15377.
Meyerhof W, Batram C, Kuhn C et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses. 2010; 35: 157-170.
Liman ER, Zhang YV, Montell C. Peripheral coding of taste. Neuron. 2014; 81: 984-1000.
Gerbe F, Sidot E, Smyth DJ et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature. 2016; 529: 226-230.
Howitt MR, Lavoie S, Michaud M et al. Tuft cells, taste- chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016; 351: 1329-1333.
Barham HP, Cooper SE, Anderson CB et al. Solitary chemosensory cells and bitter taste receptor signaling in human sinonasal mucosa. Int Forum Allergy Rhinol. 2013; 3: 450-457.
Tizzano M, Cristofoletti M, Sbarbati A, Finger TE. Expression of taste receptors in solitary chemosensory cells of rodent airways. BMC Pulm Med. 2011; 11: 3.
Lee RJ, Hariri BM, McMahon DB et al. Bacterial D-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Sci Signal. 2017; 10.
Lee RJ, Kofonow JM, Rosen PL et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest. 2014; 124: 1393-1405.
Jiang P, Josue J, Li X et al. Major taste loss in carnivorous mammals. Proc Natl Acad Sci U S A. 2012; 109: 4956-4961.
Bufe B, Breslin PA, Kuhn C et al. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr Biol. 2005; 15: 322-327.
Tan J, Abrol R, Trzaskowski B, Goddard WA. 3D structure prediction of TAS2R38 bitter receptors bound to agonists phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP). J Chem Inf Model. 2012; 52: 1875-1885.
Biarnés X, Marchiori A, Giorgetti A et al. Insights into the binding of phenylthiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS One. 2010; 5: e12394.
Floriano WB, Hall S, Vaidehi N, Kim U, Drayna D, Goddard WA. Modeling the human PTC bitter-taste receptor interactions with bitter tastants. J Mol Model. 2006; 12: 931-941.
Lipchock SV, Mennella JA, Spielman AI, Reed DR. Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells. Am J Clin Nutr. 2013; 98: 1136-1143.
Chamoun E, Mutch DM, Allen-Vercoe E et al. A review of the associations between single nucleotide polymorphisms in taste receptors, eating behaviors, and health. Crit Rev Food Sci Nutr. 2018; 58: 194-207.
Ramos-Lopez O, Panduro A, Martinez-Lopez E, Roman S. Sweet taste receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hyper- triglyceridemia among the population of west Mexico. Nutrients. 2016; 8: 101.
Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ. Motile cilia of human airway epithelia are chemosensory. Science. 2009; 325: 1131-1134.
Lee RJ, Chen B, Redding KM, Margolskee RF, Cohen NA. Mouse nasal epithelial innate immune responses to Pseudomonas aeruginosa quorum-sensing molecules require taste signaling components. Innate Immun. 2014; 20: 606-617.
Lee RJ, Cohen NA. The emerging role of the bitter taste receptor T2R38 in upper respiratory infection and chronic rhinosinusitis. Am J Rhinol Allergy. 2013; 27: 283-286.
Lee RJ, Xiong G, Kofonow JM et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest. 2012; 122: 4145-4159.
Yan CH, Hahn S, McMahon D et al. Nitric oxide production is stimulated by bitter taste receptors ubiquitously expressed in the sinonasal cavity. Am J Rhinol Allergy. 2017; 31: 85-92.
Hariri BM, McMahon DB, Chen B et al. Flavones modulate respiratory epithelial innate immunity: anti-inflammatory effects and activation of the T2R14 receptor. J Biol Chem. 2017; 292: 8484-8497.
Marcinkiewicz J. Nitric oxide and antimicrobial activity of reactive oxygen intermediates. Immunopharmacology. 1997; 37: 35-41.
Fang FC. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest. 1997; 99: 2818-2825.
Hariri BM, McMahon DB, Chen B et al. Plant flavones enhance antimicrobial activity of respiratory epithelial cell secretions against Pseudomonas aeruginosa. PLoS One. 2017; 12: e0185203.
Hariri BM, Payne SJ, Chen B et al. In vitro effects of anthocyanidins on sinonasal epithelial nitric oxide production and bacterial physiology. Am J Rhinol Allergy. 2016; 30: 261-268.
Workman AD, Carey RM, Kohanski MA et al. Relative susceptibility of airway organisms to antimicrobial effects of nitric oxide. Int Forum Allergy Rhinol. 2017; 7: 770-776.
Parker D, Prince A. Innate immunity in the respiratory epithelium. Am J Respir Cell Mol Biol. 2011; 45: 189-201.
Hamilos DL. Host-microbial interactions in patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2014; 133: 640-653.
Hariri BM, Cohen NA. New insights into upper airway innate immunity. Am J Rhinol Allergy. 2016; 30: 319-323.
Stevens WW, Lee RJ, Schleimer RP, Cohen NA. Chronic rhinosinusitis pathogenesis. J Allergy Clin Immunol. 2015; 136: 1442-1453.
Chen B, Shaari J, Claire SE et al. Altered sinonasal ciliary dynamics in chronic rhinosinusitis. Am J Rhinol. 2006; 20: 325-329.
Adappa ND, Truesdale CM, Workman AD et al. Correlation of T2R38 taste phenotype and in vitro biofilm formation from nonpolypoid chronic rhinosinusitis patients. Int Forum Allergy Rhinol. 2016; 6: 783-791.
Adappa ND, Zhang Z, Palmer JN et al. The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. Int Forum Allergy Rhinol. 2014; 4: 3-7.
Adappa ND, Howland TJ, Palmer JN et al. Genetics of the taste receptor T2R38 correlates with chronic rhinosinusitis necessitating surgical intervention. Int Forum Allergy Rhinol. 2013; 3: 184-187.
Adappa ND, Farquhar D, Palmer JN et al. TAS2R38 genotype predicts surgical outcome in nonpolypoid chronic rhinosinusitis. Int Forum Allergy Rhinol. 2016; 6: 25-33.
Mfuna EL, Filali-Mouhim A, Boisvert P, Boulet LP, Bossé Y, Desrosiers M. Genetic variations in taste receptors are associated with chronic rhinosinusitis: a replication study. Int Forum Allergy Rhinol. 2014; 4: 200-206.
Workman AD, Brooks SG, Kohanski MA et al. Bitter and sweet taste tests are reflective of disease status in chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2017 Oct 17. pii: S2213-2198(17) 30739-0. Disponible en: https://doi.org/10.1016/j.jaip.2017.09.014.
Tizzano M, Gulbransen BD, Vandenbeuch A et al. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A. 2010; 107: 3210-3215.
Saunders CJ, Christensen M, Finger TE, Tizzano M. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc Natl Acad Sci U S A. 2014; 111: 6075-6080.
Lee RJ, Cohen NA. Sinonasal solitary chemosensory cells “taste” the upper respiratory environment to regulate innate immunity. Am J Rhinol Allergy. 2014; 28: 366-373.
Garnett JP, Baker EH, Baines DL. Sweet talk: insights into the nature and importance of glucose transport in lung epithelium. Eur Respir J. 2012; 40: 1269-1276.
Garnett JP, Braun D, McCarthy AJ et al. Fructose transport- deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid. Cell Mol Life Sci. 2014; 71: 4665-4673.
Pezzulo AA, Gutiérrez J, Duschner KS et al. Glucose depletion in the airway surface liquid is essential for sterility of the airways. PLoS One. 2011; 6: e16166.
Baker EH, Clark N, Brennan AL et al. Hyperglycemia and cystic fibrosis alter respiratory fluid glucose concentrations estimated by breath condensate analysis. J Appl Physiol. 1985; 2007 (102): 1969-1975.
Hatten KM, Palmer JN, Lee RJ, Adappa ND, Kennedy DW, Cohen NA. Corticosteroid use does not alter nasal mucus glucose in chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2015; 152: 1140-1144.
Jiang P, Cui M, Zhao B et al. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J Biol Chem. 2005; 280: 15238-15246.
Radkov AD, Moe LA. Bacterial synthesis of D-amino acids. Appl Microbiol Biotechnol. 2014; 98: 5363-5374.
Bassoli A, Borgonovo G, Caremoli F, Mancuso G. The taste of D- and L-amino acids: in vitro binding assays with cloned human bitter (TAS2Rs) and sweet (TAS1R2/TAS1R3) receptors. Food Chem. 2014; 150: 27-33.
Snelgrove R, Lloyd C. Tasting type 2 inflammation in the airways. J Allergy Clin Immunol. 2018; 142: 403-404.
An SS, Liggett SB. Taste and smell GPCRs in the lung: evidence for a previously unrecognized widespread chemosensory system. Cell Signal. 2018; 41: 82-88.
Robinett KS, Koziol-White CJ, Akoluk A, An SS, Panettieri RA, Liggett SB. Bitter taste receptor function in asthmatic and nonasthmatic human airway smooth muscle cells. Am J Respir Cell Mol Biol. 2014; 50: 678-683.
An SS, Wang WC, Koziol-White CJ et al. TAS2R activation promotes airway smooth muscle relaxation despite b(2)- adrenergic receptor tachyphylaxis. Am J Physiol Lung Cell Mol Physiol. 2012; 303: L304-L311.
Deshpande DA, Wang WC, McIlmoyle EL et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med. 2010; 16: 1299-1304.
Clark AA, Liggett SB, Munger SD. Extraoral bitter taste receptors as mediators of off-target drug effects. FASEB J. 2012; 26: 4827-4831.
Jaggupilli A, Howard R, Upadhyaya JD, Bhullar RP, Chelikani P. Bitter taste receptors: novel insights into the biochemistry and pharmacology. Int J Biochem Cell Biol. 2016; 77: 184-196.
Levit A, Nowak S, Peters M et al. The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14. FASEB J. 2014; 28: 1181-1197.