2019, Number 3
<< Back Next >>
Anales de Radiología México 2019; 18 (3)
Comparative study of upper and lower longitudinal fascicles with diffusion tensor images in pediatric autistic and non-autistic patients
Reyes-Vaca JG, Villegas-Valdez DMM, Bravo-Oro A, Hernández-Rodríguez HG
Language: Spanish
References: 37
Page: 148-158
PDF size: 2936.26 Kb.
ABSTRACT
Introduction: Autism spectrum disorder is a neuronal connectivity problem that affects linguistic, behavioral and social skills. It predominates in males older than 2 years, it is associated with genetic syndromes and its etiology is unknown.
Objective: To assess the integrity of the upper and lower longitudinal fascicles by magnetic resonance in autistic children without treatment and non-autistic children.
Materials and methods: Comparative, prospective and cross-sectional study with diffusion tensor images of the brain in 16 pediatric patients; 8 with Autism spectrum disorder not associated with another genetic syndrome and 8 non-autistic matched controls. The statistical analysis of the fraction of anisotropy, medium diffusion and the thickness of the superior and inferior longitudinal fascicles of the brain were evaluated and performed.
Results: Increase of the anisotropy fraction and decrease of the mean diffusion values in a significant way in the posterior part of the left superior longitudinal fascicle and a large part of the right inferior longitudinal fascicle, in Autistic patients.
Conclusion: Magnetic resonance with diffusion tensor, supports the early diagnosis of patients with Autistic spectrum disorder, demonstrating the lack of integrity of the white matter microstructure in a non-invasive way.
REFERENCES
McGrath J, Johnson K, O'Hanlon E, Garavan H, Gallagher L, Leemans A. White matter and visuospatial processing in autism:a constrained spherical deconvolution tractography study. Autism Research. 2013;6:307-19.
Pinto D, Pagnamenta A, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466(7304):368-72.
Retico A, Giuliano A, Tancredi R, Cosenza A, Apicella F, Narzisi A, et al. The effect of gender on the neuroanatomy of children with autism spectrum disorders:a support vector machine case-control study. Molecular Autism. 2016;7:5.
Maski K, Jesteb S, Spence S. Common neurological co-morbidities in autism spectrum disorders. Curr Opin Pediatr. 2011;23(6):609-15.
Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474(7351):380-4.
Ecker C, Ginestet C, Feng Y, Johnston P, Lombardo MV, Lai MC, et al. Brain surface anatomy in adults with autism:the relationship between surface area, cortical thickness, and autistic symptoms. JAMA Psychiatry. 2013;70(1):59-70.
Belmonte M, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosc. 2004;24(42):9228-31.
Monk CS, Peltier S.J, Wiggins JL, Weng SJ, Carrasco M, Risi S, et al. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage. 2009;47(2):764-72.
Beailieu C. The basis of anisotropic water diffusion in the nervous system- a technical review. NMR Biomed. 2002;15(7-8):435-55.
Villalobos ME, Mizuno A, Dahl BC, Kemmotsu N, Müller RA. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage. 2005;25(3):916-25.
Brambilla P, Hardan A, di Nemi SU, Perez J, Soares JC, Barale F. Brain anatomy and development in autism:review of structural MRI studies. Brain Res Bull. 2003;61(6):557-69.
Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, et al. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage. 2010;53(1):247-56.
Ameis SH, Catani M. Altered White matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex. 2015;62:158-81.
Amaral DG, Schumann MC, Nordhal WC. Neuroanatomy of autism. Trends Neurosci. 2008;31(3):137-45.
Ismail MM, Keynton RS, Mostapha MM, ElTanboly AH, Casanova MF, Gimel'farb GL, et al. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging:A Survey. Front Hum Neurosci. 2016;10:211.
Hollander E, Anagnostou E, Chaplin W, Esposito K, Haznedar MM, Licalzi E, et al. Striatal volumen in Magnetic Resonance Imaging and repetitive behaviors in Autism. Biol Psychiatry. 2005;58(3):226-32.
Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism:evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17(4):951-61.
Koshino H, Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. fMRI investigation of working memory for faces in autism:visual coding and underconnectivity with frontal areas. Cerebral Cortex. 2008;18(2):289-300.
Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology. 2004;230(1):77-87.
Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, et al. Structural maturation of neural pathways in children and adolescents:in vivo study. Science. 1999;283(5409):1908-11.
Catani M, Jones DK, Donato RH, Ffytche DH. Occipito-temporal connections in the human brain. Brain. 2003;126(Pt9):2093-107.
Shinoura N, Suzuki Y, Tsukada M, Katsuki S, Yamada R, Tabei Y, et al. Impairment of inferior longitudinal fasciculus plays a role in visual memory disturbance. Neurocase. 2007;13(2):127-30.
Schlesselman JJ. Sample Size Requirements in Cohort and Case –Control Studies of Disease. Am J Epid. 1974;99:381-84.
Lwanga SK, Lemeshow S. Sample size determination in health studies. A practical manual. Geneva:World Health Organisation;1991.
Joseph RM, Fricker Z, Fenoglio A, Lindgren KA, Knaus TA, Tager-Flusberg H. Structural asymmetries of language-related gray and white matter and their relationship to language function in young children with ASD. Brain Imaging Behav. 2014;8:60-72.
Knaus TA, Silver AM, Kennedy M, Lindgren KA, Dominick KC, Siegel J, et al. Language laterality in autism spectrum disorder and typical controls:a functional, volumetric, and diffusion tensor MRI study. Brain Lang. 2010;112(2):113-20.
Weinstein M, Ben-Sira L, Levy Y, Zachor DA, Ben Itzhak E, Artzi M, et al. Abnormal White Matter Integrity in Young Children with Autism. Hum Brain Mapp. 2011;32(4):534-43.
Billeci L, Calderoni S, Tosetti M, Catani M, Muratori F. White matter connectivity in children with autism spectrum disorders:a tract-based spatial statistics study. BMC Neurol. 2012;12:148.
Bode MK, Mattila ML, Kiviniemi V, Rahko J, Moilanen I, Ebeling H, et al. White matter in autism spectrum disorders –evidence of impaired fiber formation. Acta Radiologica. 2011;52(10):1169-74.
Sahyoun CP, Belliveau JW, Mody M. White matter integrity and pictorial reasoning in high-functioning children with autism. Brain Cogn. 2010;73(3):180-8.
Geswind DH, Levitt P- Autism spectrum disorders:developmental disconecction síndromes. Curr Opin Neurobiol. 2007;17(1):103-11.
HappéF, Ronald A, Plomin R:Time to give up on a single explanation for autism. Nat Neurosci. 2006;9(10):1218-20.
Chung MK, Dalton KM, Alexander AL, Davidson RJ. Less White matter concentration in autism:2D voxel-based morphometry, NeuroImage, 2004;23(1):242-51.
McAlonan GM, Cheung V, Cheung C, Suckling J, Lam GY, Tai KS, et al. Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain 2005;128(Pt 2):268-76.
Flagg EJ, Cardy JE, Roberts W, Roberts TP. Language lateralization development in children with autism:insights from the late field magnetoencephalogram. Neurosci Lett. 2005;386(2):82-7.
Frye RE, Beauchamp MS. Receptive language organization in high-functioning autism. J Child Neurol. 2009;24(2):231-6.
Just MA, Cherkassky VL, Keller TA, Minshew NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism:evidence of underconnectivity. Brain. 2004;127(Pt8):1811-21.