2018, Number 3
<< Back Next >>
Rev Cubana Invest Bioméd 2018; 37 (3)
Use of biocides and bacterial response mechanisms
Patiño BDP, Pérez ALV, Torres CMI, Rosas LDA, Di Filippo IG
Language: Spanish
References: 73
Page: 1-17
PDF size: 197.47 Kb.
ABSTRACT
The constant appearance of microorganisms that increase their tolerance to
substances used for their control such as biocides is generating attention in public
health and should be studied, taking into account the various risks that can be faced
mainly in patients with high susceptibility to infections associated with health care,
given that these biocides are used on a daily basis, which has generated bacterial
mechanisms such as the formation of biofilms and those that increase their tolerance,
such as the generation of flow pumps. This bacterial response to the pressure of the
biocides is enhanced by the appearance of microorganism's resistant to the
antimicrobials used in the treatment and control of infections, which makes their
control difficult. A literature review was made available in the databases Proquest,
ovid, Science direct, PubMed, where a total of 103 articles were found and 73 were
selected, according to the year of publication in the Spanish and English languages,
which included Descriptive and review studies. The objective of this article is to carry
out a review about the main action mechanisms of biocides and the tolerance
response presented by microorganisms against them; which leads to reflection on the
implications of the use of these substances on human health.
REFERENCES
Anderson DJ, Podgorny K, Berríos-Torres SI, Bratzler DW, Dellinger EP, Greene L, et al. Strategies to Prevent Surgical Site Infections in Acute Care Hospitals: 2014 Update. Infect Control Hosp Epidemiol [Internet]. 2014 [citado 2018 Abr 19];35(6):605-27. Available from: https://www.cambridge.org/core/product/identifier/S0899823X00191937/type/journal_article
García Martín S. Los Biocidas: Incidencia Normativa y Social: Situación en la Comunidad de Madrid. [Internet ] Tesis doctoral. Madrid, España. Universidad Complutense de Madrid. 2010. [citado 2018 Abr 19] Available from: http://eprints.ucm.es/11971/1/T32548.pdf
Borrego S. Los biocidas vegetales en el control del biodeterioro del patrimonio documental . Perspectivas e impacto. Rev CENIC Ciencias Biológicas. 2015;46(3):259-69.
Ortega Morente E, Fernández-Fuentes MA, Grande Burgos MJ, Abriouel H, Pérez Pulido R, Gálvez A, et al. Biocide tolerance in bacteria. Int J Food Microbiol [Internet]. 2013 [citado 2018 Abr 19];162(1):13-25. Available from: http://dx.doi.org/10.1016/j.ijfoodmicro.2012.12.028
Konstantinou IK, Albanis TA. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review. Environ Int. 2004;30(2):235-48.
Gnanadhas DP, Marathe SA, Chakravortty D. Biocides - resistance, cross-resistance mechanisms and assessment. Expert Opin Investig Drugs [Internet]. 2013 [citado 2018 Abr 19];22(2):191-206. Available from: http://www.tandfonline.com/doi/full/10.1517/13543784.2013.748035
Fernández-Cuenca F, Tomás M, Caballero-Moyano FJ, Bou G, Martínez-Martínez L, Vila J, et al. Reduced susceptibility to biocides in Acinetobacter baumannii: association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps. J Antimicrob Chemother. 2015;70(12):3222-9.
Wieck S, Olsson O, Kümmerer K. Possible underestimations of risks for the environment due to unregulated emissions of biocides from households to wastewater. Environ Int. 2016;94:695-705.
Orús P, Gomez-Perez L, Leranoz S, Berlanga M. Increasing antibiotic resistance in preservative-tolerant bacterial strains isolated from cosmetic products. Int Microbiol. 2015;18(1):51-9.
Pastrana Carrasco J, Garza Ramos JU, Barrios H, Morfin Otero R, Rodríguez Noriega E, Barajas JM, et al. Frecuencia del gen qacEΔ1 y resistencia a biocidas en aislamientos clínicos de enterobacterias productoras de β-lactamasas de espectro extendido. Rev Investig Clin. 2012;64(6 PART 1):535-40.
Prieto AMG, Wijngaarden J, Braat JC, Rogers MRC, Majoor E, Brouwer EC, et al. The two-component system ChtRS contributes to chlorhexidine tolerance in Enterococcus faecium. Antimicrob Agents Chemother. 2017;61(5):1-9.
Sauerbrei A. Is hepatitis B-virucidal validation of biocides possible with the use of surrogates? World J Gastroenterol. 2014;20(2):436-44.
Capita R, Riesco-Peláez F, Alonso-Hernando A, Alonso-Calleja C. Exposure of Escherichia coli ATCC 12806 to sublethal concentrations of food-grade biocides influences its ability to form biofilm, resistance to antimicrobials, and ultrastructure. Appl Environ Microbiol. 2014;80(4):1268-80.
Ribas Ozonas B. Biocidas: Datos sobre su evaluación para la salud, industria alimentaria e impacto ambiental. Monogr la Real Acad Nac Farm. 2010:99-127.
Wessels S, Ingmer H. Modes of action of three disinfectant active substances: A review. Regul Toxicol Pharmacol [Internet. 2013 [citado 2018 Abr 19];67(3):456-67. Available from: http://dx.doi.org/10.1016/j.yrtph.2013.09.006
Buffet-Bataillon S, Tattevin P, Maillard J-Y, Bonnaure-Mallet M, Jolivet-Gougeon A. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria. Futur Microbiol. 2016;11(1):81-92.
Tronsmo A, Gjøen T, Sørum H, Godfroid J, Yazdankhah SP, Jelmert A, et al. Antimicrobial resistance due to the use of biocides and heavy metals: a literature review. Opinion of the Panel Panel on Microbial Ecology of the Norwegian Scientific Committee for Food Safety [Internet]. 2016;95. Available from: https://brage.bibsys.no/xmlui/handle/11250/2471729
Sanchez-Vizuete P, Orgaz B, Aymerich S, Le Coq D, Briandet R. Pathogens protection against the action of disinfectants in multispecies biofilms. Front Microbiol. 2015;6:1-12.
Ashraf MA, Ullah S, Ahmad I, Qureshi AK, Balkhair KS, Abdur Rehman M, et al. Green biocides, a promising technology: Current and future applications to industry and industrial processes. J Sci Food Agric. 2014;94(3):388-403.
López MC, Grande MJ, López RL, Gálvez A. Resistencia a biocidas de diferentes cepas de escherichia coli. Dialnet. 2010;23:121-136.
Hernández Navarrete MJ, Celorrio Pascual JM, Lapresta Moros C, Solano Bernad VM. Fundamentos de antisepsia, desinfección y esterilización. Enferm Infecc Microbiol Clin [Internet]. 2014 [citado 2018 Abr 19];32(10):681-8. Available from: https://www.sciencedirect.com/science/article/pii/S0213005X14001839
Escherichia DE. Resistencia a biocidas de diferentes cepas de diferentes cepas de escherichia coli. Anales de la Real Academia de Ciencias Veterinarias de Andalucía Oriental. 2010;23(1):121-36.
Seier-Petersen MA, Jasni A, Aarestrup FM, Vigre H, Mullany P, Roberts AP, et al. Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis. J Antimicrob Chemother. 2014;69(2):343-8.
Rodrigues Barata AR, Rodríguez Espinosa J, Heras Mendaza F, Conde-Salazar Gomèz L. Kathon CG y Dermatología Laboral: Actualización. Med Segur Trab (Madr) [Internet]. 2012 [citado 2018 Abr 23];58(228):237-45. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0465-546X2012000300008&lng=en&nrm=iso&tlng=en
McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 2001 January;14(1):227.
Jara MA, Céspedes PF. Detección de genes de resistencia a biocidas en bacterias nosocomiales mediante la reacción en cadena de la polimerasa. Santiago de Chile: Universidad de Chile. 2009 [citado 2018 Abr 23];983. Available from: http://repositorio.uchile.cl/bitstream/handle/2250/131438/Detecci%C3%B3n-de-genes-de-resistencia-a-biocidas-en-bacterias-nosocomiales-mediante-la-reacci%C3%B3n-en-cadena-de-la-polimerasa.pdf?sequence=1&isAllowed=y
Almeida LB, Férnandez ML, López MC, López RL, Marín A. Resistencia a biocidas en cepas de salmonella sp. Aisladas de huevo. Dialnet. 2012;25(1):159-72.
March JK, Pratt MD, Lowe CW, Cohen MN, Satterfield BA, Schaalje B, et al. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants. Microbiologyopen. 2015;4(5):764-73.
Diéguez CC. Biocidas. Eficacia. Criterios para su evaluación y autorización. Rev salud ambient. 2006;6(1-2): 56-60.
Cabrera C, Fabian G, Zuñiga A. La resistenacia de bacterias a antibioticos, antisepticos y desinfectantes. Una manifestacion de los mecanismos de supervivencia y adaptación. Colomb Med [Internet]. 2007 [citado 2018 Abr 23];38(2):149-58. Available from: http://www.redalyc.org/html/283/28338208/
Garrido AM, Burgos MJG, Márquez MLF, Aguayo MCL, Pulido RP, del Árbol JT, et al. Biocide tolerance in salmonella from meats in Southern Spain. Brazilian J Microbiol. 2015;46(4):1177-81.
Wales A, Davies R. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. Antibiotics [Internet]. 2015 [citado 2018 Abr 23];4(4):567-604. Available from: http://www.mdpi.com/2079-6382/4/4/567
Mcdonnell G, Russell AD. Antiseptics and disinfectants: Activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147-79.
Morales Pérez M, García Milian AJ. Papel de la superfamilia ABC en la resistencia farmacológica. Horiz Sanit [Internet].2017 [citado 2018 Abr 23];16(2):93-101. Available from: http://www.scielo.org.mx/scielo.php?pid=S2007-74592017000200093&script=sci_arttext
Reynaldo MB, Flores MB, Viegas Caetano JA, Magariños MDC. Efficacy of biocides against hospital isolates of Staphylococcus sensitive and resistant to methicillin, in the province of Buenos Aires, Argentina [Eficacia de algunos biocidas contra estafilococos hospitalarios sensibles y resistentes a la meticilina en. Rev Panam Salud Publica/Pan Am J Public Heal [Internet]. 2004 [citado 2018 Abr 23];16(3):187-92. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-14044260151&partnerID=40&md5=f677b3cd3d373dd76c5ec13840706827
Marchetti M, Errecalde J, Mestorino N. Dirección para correspondencia: Resistencia bacteriana a Los antimicrobianos ocasionada por bombas de Eflujo. Impacto en la Multirresistencia. AnAlectA Vet. 2011;40(312):40-53.
Vásquez Giraldo DF, Libreros Zúñiga GA, Crespo Ortiz MP. Effects of biocide exposure on P. Aeruginosa, E. coli and A. Baumannii complex isolates from hospital and household environments. Infectio [Internet]. 2017 [citado 2018 Abr 25];21(4):243-50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020191915&doi=10.22354%2Fin.v21i4.687&partnerID=40&md5=d3cb7d0c4fc162d409ec4c039c4cab4d
Cabrera Medina M, Borrero Reynaldo Y, Rodríguez Fajardo A, Angarica Baró, EM, Rojas Martínez O. Efecto de tres bioestimulantes en el cultivo de pimiento (capsicum annun, l) variedad atlas en condiciones de cultivo protegido. Ciencia en su PC [Internet]. 2011 [citado 2018 Abr 25];(4):32-42. Recuperado de: http://www.redalyc.org/articulo.oa?id=181324323003
de León Rosales SP, Arredondo Hernández R, López Vidal Y. Resistance to antibiotic: A serious global problem [La resistencia a los antibióticos: Un grave problema global]. Gac Med Mex [Internet. 2015 [citado 2018 Abr 25];151(5):681-9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84948168242&partnerID=40&md5=9c28174bf1e1d2bb62564f47b3fba9a6
Curião TIG. Análisis fenotípico, genómico y bioinformático de los elementos genéticos asociados a resistencia a antibióticos y biocidas en enterobacterias. Madrid: Universidad Complutense; 2014. p. 221.
Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R, You L, et al. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun [Internet]. 2017 [citado 2018 Abr 25];8(1). Available from: http://dx.doi.org/10.1038/s41467-017-01532-1
Fuchs LY, Chihu L, Conde C, González VM, Noguez AH, Calderón E, et al. Mecanismos moleculares de la resistencia bacteriana. Salud Pública de México [Internet]. 1994 [citado 2018 Abr 25];36(4):428-438. Available from: http://www.redalyc.org/articulo.oa?id=10636410
Trujillo M, Gutiérrez ÁM. Microbial Biofilms. Universidad de la Laguna. 2017 [citado 2019 Mar 28] . Available from: https://riull.ull.es/xmlui/bitstream/handle/915/5023/BIOFILMS%20MICROBIANOS.pdf?sequence=1
Billings N, Ramirez Millan M, Caldara M, Rusconi R, Tarasova Y, Stocker R, et al. The Extracellular Matrix Component Psl Provides Fast-Acting Antibiotic Defense in Pseudomonas aeruginosa Biofilms. PLoS Pathog. 2013 [citado 2018 May 02];9(8):e1003526. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738486/
Ortiz S. Diversidad genética y persistencia ambiental de Listeria Monocytogenes en dos plantas de procesado de carne de cerdo ibérico: influencia de la resistencia a desinfectantes de amonio cuaternario. [Internet] Tesis Doctoral. Madrid, España. Universidad Complutense de Madrid. 2015 [citado 2018 May 02]. Available from: http://eprints.ucm.es/38371/1/T37495.pdf
Lavilla ML, Abriouel H, Benomar N, Gálvez A. Estudio de los determinantes genéticos de resistencias a biocidas y su papel en la resistencia cruzada con antibióticos en bacterias de origen alimentario. [Internet] Tesis Doctoral. Jaén, España. Universidad de jaén. 2014 [citado 2018 May 02]. Available from: http://hdl.handle.net/10953/694
Berrocal AM, Blas RH, Flores J, Siles M. Evaluación del potencial mutagénico de biocidas (vertimec y pentacloro) sobre cebolla. Rev Colomb Biotecnol. 2013;XV(1):17-27.
Van Acker H, Van Dijck P, Coenye T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol [Internet]. 2014 [citado 2018 May 02];22(6):326-33. Available from: http://dx.doi.org/10.1016/j.tim.2014.02.001
Gabrilska RA, Rumbaugh KP. Biofilm models of polymicrobial infection. Future Microbiol. 2015;10(12):1997-2015.
Nelson-filho P, Louvain MC, Macari S, Lucisano MP, Silva RAB da, Queiroz AM de, et al. Microbial contamination and disinfection methods of pacifiers. J Appl Oral Sci [Internet]. 2015 [citado 2018 May 02];23(5):523-8. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1678-77572015000500523&lng=en&tlng=en
Pérez H, Robles A. Aspectos básicos de los mecanismos de resistencia bacteriana. Rev Med (Puebla) [Internet]. 2013 [citado 2018 May 08];4(4):186-91. Available from: http://www.medigraphic.com/pdfs/revmed/md-2013/md133i.pdf
Mathers AJ, Peirano G, Pitout JDD. The role of epidemic resistance plasmids and international high- risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28(3):565-91.
Silva RF, MendonçaSí SCM, CarvalhoLuí LM, Reis AM, Gordo I, Trindade S, et al. Pervasive sign epistasis between conjugative plasmids and Drug-Resistance chromosomal mutations. PLoS Genet. 2011 [citado 2018 May 08];7(7). e1002181 Available from: https://doi.org/10.1371/journal.pgen.1002181
Jutkina J, Marathe NP, Flach CF, Larsson DGJ. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci Total Environ [Internet]. 2018 [citado 2018 May 08];616-617. Available from: https://doi.org/10.1016/j.scitotenv.2017.10.312
Kamruzzaman M, Shoma S, Thomas CM, Partridge SR, Iredell JR. Plasmid interference for curing antibiotic resistance plasmids in vivo. PLoS One. 2017;12(2):1-20.
De la Fuente NM, Villarreal JM, Díaz MA, García AP. Resistance. Evaluación de la actividad de los agentes antimicrobianos ante el desafío de la resistencia bacteriana. Rev mex cienc farm [Internet]. 2015 [citado 2018 May 08];46(2):7-16. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952015000200007&lng=es
Phillips-jones MK, Harding SE. Antimicrobial resistance ( AMR ) nanomachines - mechanisms for fluoroquinolone and glycopeptide recognition , efflux and / or deactivation. Biophys Rev. 2018;10(2):347-362.
Slipski CJ, Zhanel GG, Bay DC. Biocide Selective TolC-Independent Efflux Pumps in Enterobacteriaceae. Journal of Membrane Biology. 2017:1-19.
Andersen JL, He GX, Kakarla P, Ranjana KC, Kumar S, Lakra WS, et al. Multidrug efflux pumps from enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health. 2015;12(2):1487-547.
Uicab Y, Canto-Canché B, Islas-Flores I. Revisión de las características de los transportadores ABC involucrados en patogénesis fúngica. Tecnociencia Chihuahua. 2010;IV(2):87-96.
Kresmann S, Arokia AHR, Koch C, Sures B. Ecotoxicological potential of the biocides terbutryn, octhilinone and methylisothiazolinone: Underestimated risk from biocidal pathways? Sci Total Environ [Internet]. 2018 [citado 2018 May 08];625:900-8. Available from: https://doi.org/10.1016/j.scitotenv.2017.12.280
Wassenaar T, Ussery D, Nielsen L, Ingmer H. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol [Internet]. 2015 [citado 2018 May 08];5(1):44-61. Available from: http://www.akademiai.com/doi/abs/10.1556/EuJMI-D-14-00038
Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016 [citado 2018 May 08];4(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888801/ doi:10.1128/microbiolspec.VMBF-0016-2015.
Diomedi A, Chacón E, Delpiano L, Hervé B, Jemenao MI, Medel M, et al. Antisépticos y desinfectantes: apuntando al uso racional. Recomendaciones del Comité Consultivo de Infecciones Asociadas a la Atención de Salud, Sociedad Chilena de Infectología. Rev Chil infectología [Internet]. 2017 [citado 2018 May 08];34(2):156-74. Available from: http://www.scielo.cl/pdf/rci/v34n2/art10.pdf%0Ahttp://www.ncbi.nlm.nih.gov/pubmed/28632831%0Ahttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182017000200010&lng=en&nrm=iso&tlng=en
Wassenaar TM, Ussery DW, Ingmer H, Sepulveda E. The qacC Gene Has Recently Spread between Rolling Circle Plasmids of Staphylococcus , Indicative of a Novel Gene Transfer Mechanism. Front Microbiol. 2016:7.
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337-418.
Blanco P, Hernando-Amado S, Reales-Calderon J, Corona F, Lira F, Alcalde-Rico M, et al. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms [Internet]. 2016 [citado 2018 May 15];4(1):14. Available from: http://www.mdpi.com/2076-2607/4/1/14
Zhang L, Li X, Poole K. SmeDEF Multidrug Efflux Pump Contributes to Intrinsic Multidrug Resistance in Stenotrophomonas maltophilia SmeDEF Multidrug Efflux Pump Contributes to Intrinsic Multidrug Resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2001;45(12):3497-503.
De Silva M, Ning C, Ghanbar S, Zhanel G, Logsetty S, Liu S, et al. Evidence that a novel quaternary compound and its organic N-chloramine derivative do not select for resistant mutants of Pseudomonas aeruginosa. J Hosp Infect. 2015 [citado 2018 May 15];91(1):53-8. Available from: http://dx.doi.org/10.1016/j.jhin.2015.05.009
Alcaldía Mayor de Bogotá. Secretaria Distrital de Salud de Bogotá, D.C. Guías para la prevención, control y vigilancia epidemiológica de infecciones intrahospitalarias. Uso de desinfectantes. Bogotá: Esfera Editores Ltda; 2004.
Tuuli MG, Liu J, Stout MJ, Martin S, Cahill AG, Odibo AO, et al. A Randomized Trial Comparing Skin Antiseptic Agents at Cesarean Delivery. Obstet Gynecol Surv. 2016;71(6):322-4.
Hernández MJ, Celorrio JM, Lapresta C, Solano VM. Fundamentos de antisepsia, desinfección y esterilización. Enferm Infecc Microbiol Clin. 2014;32(10):681-8.
Arenas P, Gómez de Saravia S, Guiamet P, de la Paz J, Borrego S. Plantas con actividad biocida de aplicación en el control del biodeterioro que afecta al patrimonio cultural. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 2007 [citado 2018 May 15];6(6):323-4. Available from: http://www.redalyc.org/articulo.oa?id=85617472006