2018, Número 3
<< Anterior Siguiente >>
Rev Cubana Invest Bioméd 2018; 37 (3)
Fluctuaciones de la homeostasis del zinc relacionadas con estadios del crecimiento-desarrollo humano
Ramírez EOE, Ley LLR, Reyes MR, Bastart OE, Ramis BJA
Idioma: Español
Referencias bibliográficas: 60
Paginas: 1-16
Archivo PDF: 161.93 Kb.
RESUMEN
Se conoce que el Factor de Crecimiento Insulino Dependiente I (IGF-I), disminuye su
expresión en presencia de déficit plasmático de zinc. El objetivo de la presente
revisión es relacionar fluctuaciones de la homeostasis del zinc con estadios del
crecimiento-desarrollo humano. De la discusión de la data presentada se tiene que: el
crecimiento‒desarrollo humano es un proceso con incidencias del calcio y del zinc,
donde el déficit de zinc resulta un factor de alto riesgo para el nacimiento prematuro
de infantes y de niños con baja talla; existen evidencias suficientes para inferir una
asociación débil directa entre el incremento gradual de los niveles plasmáticos de zinc
y calcio con el aumento de la edad durante la infancia y la adolescencia y de que la
interacción de colaboración entre el calcio y el zinc en la osteogénesis, sufre una
diferenciación de funciones en la osificación endocondral, y se transforma en una
relación de competencia en la formación del esmalte dental; se manifiesta como
tendencia un incremento del zinc plasmático con el aumento de la edad, con sesgos
debidos al sobrepeso y la obesidad y a la fertilidad productiva de la mujer. Puede
entonces considerarse finalmente que la homeóstasis del zinc plasmático, estabilizada
en un intervalo de valores normales para un estadio dado, propicia el crecimiento‒desarrollo necesario y suficiente, siendo el envejecimiento un momento
de involución en aquella tendencia de incremento de valores plasmáticos de zinc con
la edad.
REFERENCIAS (EN ESTE ARTÍCULO)
Lehninger AL Principios de Bioquímica de Lehninger. 7 ed. Barcelona: Editorial Omega; 2015.
Maret W. The function of zinc metallothionein: A link between cellular zinc and redox state. J Nutr. 2000;130:145-5S.
Salomons NW. Update on zinc biology. Ann Nutr Metab. 2013;62(Suppl 1):8-17.
Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. Washington, DC: National Academy Press. 2001:82-109;442-8.
Cao J, Bobo JA, Liuzz JP, Cousins RJ. Effects of intracellular zinc deplection on metallothionein and ZIPS transporter expression and apoptosis. J Leukoc Biol. 2007;70(4):559-66.
Díaz García CM, Álvarez González JL. Aspectos fisiológicos del catión cinc y sus implicaciones cardiovasculares. Rev Cubana Invest Bioméd [Internet]. 2009 Jun [citado 2017 Abr 30];28(2): Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002009000200002&lng=es
Hess SY, Peerson JM, King JC, Brown KH. Use of serum zinc concentration as an indicator of population zinc status. Food Nutr Bull. 2007;28:403S-29S.
Pérez Cantero A. Zinc y rendimiento deportivo. Buenos Aires: Revista Digital [Internet]. 2007 Dec [citado 2017 Mar 19];12(113). Disponible en: http://www.efdeportes.com/
Traboulsie A, Chemin J, Chevalier M, Quignard F, Nargeot J, Lory P, et al. Subunit-specific modulation of T-type calcium channels by zinc. J Physiol. 2007;578:159-71.
Quilliot D, Dousset B, Guerci B, Dubois F, Drouin P, Ziegler O. Evidence that diabetes mellitus favors impaired metabolism of zinc, copper, and selenium in chronic pancreatitis. Pancreas. 2001 Apr;22 (3):299-306.
Ramírez Esteva OE, Cutiño Clavel I, Núñez Bourón AI. Ley López LR. Alteraciones en el metabolismo del calcio y el zinc asociadas a la presencia de daño óseo trabecular. Portales Médicos. 2013 [citado 13 Mar 2014];VIII(9). Disponible en: http://www.portalesmedicos.com/revista/vol08_n09.htm
Ramírez Esteva OE, Cutiño Clavel I, Núñez Bourón AI, Cáceres Diéguez A. Alteraciones del metabolismo de calcio, cobre, selenio, zinc, asociadas a procesos inflamatorios en hígado y páncreas. Portales Médicos. 2013 [citado 13 Mar 2014]; VIII (9). Disponible en: http://www.portalesmedicos.com/revista/vol08_n09.htm
Kanazawa I, Yamaguchi T, Masahiro Y, Yamauchi M, Kurioka S, Yano S, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in Type 2 diabetes mellitus. J Clin Endocrino Metab. 2009;94(1):45-9.
Ramírez Esteva OE, Cáceres Diéguez A, Benítez Alcántara G, Núñez Bourón AI, Reyes Mediaceja R, Morales Lovaina CE, et al. Repercusiones hepática, pancreática y alveolar y homeostasis alteradas del zinc, vitaminas en tabaquismo y alcoholismo asociados. Rev Cubana Invest Bioméd. 2015 Jun [citado 2017 Mar 19];34(2):187-203. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002015000200008&lng=es
D'Ercole JA. Insulin-Like Growth Factor-I Stimulation of Growth: Autocrine, Paracrine and/or Endocrine Mechanisms of Action. In, Insulin-Like Growth Factors. Second Edition. Saint Austin: Landes Bioscience; 2013.
Gómez-García A, Hernández-Salazar E, González-Ortiz M, Martínez-Abundis E. Efecto de la administración oral de zinc sobre sensibilidad a la insulina y niveles séricos de leptina y andrógenos en hombres con obesidad. Rev Méd Chile. 2006;134(3):279-28.
Basnet S, Shrestha PS, Sharma A. A randomized controlled trial of zinc as adjuvant therapy for severe pneumonia in young children. Pediatrics. 2012;129(4):701-8.
A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119(10):1417-36
Age -Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA. 2013;309(19):2005-15.
De la Guardia Peña O, Ustáriz García C, García García MA, Morera Barrios L. Algunas aplicaciones clínicas del zinc y su acción sobre el sistema inmune. Rev Cubana Hematología, Inmunología y Hematorerapia. 2011 Abr [citado 2017 Mar 19];27(4):Disponible en: http://www.bvs.sld.cu/revistas/hih/vol27_4_11/hie02411.htm
Punwani D, Simon K, Choi Y, Dutra A, Gonzalez-Espinosa D, Pak E, et al. Transcription factor zinc finger and BTB domain 1 is essential for lymphocyte development. J Immunol. 2012;189:1253-64.
Sharma A, Pratap K. Understanding implantation window, a crucial phenomenon. J Hum Reprod Sci. Junio-Abril de 2012;5(1):2-6.
Krebs NF. Update on Zinc Deficiency and Excess Clinical Pediatric Practice. Ann Nutr Metab. 2013;62(Suppl 1):19-29
Wulf K, Wilhelm A, Spielmann M, Wirth S, Jenke AC: Frequency of symptomatic zinc deficiency in very low birth weight infants. Klin Padiatr. 2013;225:13-7.
López de Romaña D, Castillo C, Diazgranados D. Zinc en salud humana II. Rev Chil Nutr Nutr. 2010[citado 2016-12-28];37(2):240-7. Disponible en: http://dx.doi.org/10.4067/S0717-75182010000200014
Lönnerdal B , Hurley LS , Keeen CL . Iron and zinc concentrations and 59Fe retention in developing fetuses of zinc-deficient rats. J Nutr. 1987 Nov;117(11):1875-82.
Barone A , Ebesh O , Harper RG , Wapnir RA . Placental copper transport in rats: effects of elevated dietary zinc on fetal copper, iron and metallothionein. J Nutr. 1998 Jun;128(6):1037-41.
Xiaojun Ji, Hong He, Lisheng Ren, Ji Liu, Chunhua H. Evaluation of blood zinc, calcium and blood lead levels among children aged 1-36 months. Nutr. Hosp. 2014 [citado 2016-12-28];30(3):548-51. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112014001000011&lng=es&nrm=iso.
Kimura M, Nishida I, Tofani I, Kojima Y. Effect of Calcium and Zinc on Enchondral Ossificaton in Mandibular Condyle of Growing Rats. Dentistry in Japan. 2004;40:106.
Tang Y, Chappell HF, Dove MT. Zinc incorporation into hydroxylapatite. Biomaterials. 2009;30:2864-72.
Terra J, Jiang M, Ellis DE. Characterization of electronic structure and bonding in hydroxyapatite: Zn substitution for Ca. Philos Mag A. 2002;82:2357-77.
Matsunaga A. Mechanism of incorporation of zinc into hydroxyapatite. Acta Biomaterialia. 2010;6:2289-93.
Quest AFG, Leyton L. Zinc. Linus Pauling Institute, Oregon State University. Diciembre 2012 [citado 2017 Mar 19]. Disponible en: http//: lpi.oregonstate.edu/es/mic/minerals/zinc
Lynch RJM. Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature. International Dental Journal. 2011;61(Sup3):46-54.
López de Romaña D, Castillo C, Diazgranados D. Zinc en salud humana I. Rev Chil Nutr Nutr [Online]. 2010 [citado 28 Dic 2016];37(2):234-9. Disponible en: http://dx.doi.org/10.4067/S0717-75182010000200013 ], p
Anne M. El Zinc y la Pubertad. Livestrong-com, socio oficial de la Fundación Livestrong. [Internet ]. [Citado 2016 Jan 26]. Disponible en: www.livestrong.com/es/zinc-pubertad-info_13909/
Pita Martín de PML, Weisstaub A, Vázquez M, López LB. Niveles de Zinc en Plasma y Glóbulo Rojo en Estudiantes Universitarias. Rev. Chil. Nutr. [Internet]. 2009 Sep [citado 2017 Mayo 09];36(3):194-99. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-75182009000300001&lng=es
Pilch SM, Senti FR. Analysis of zinc data from the Second National Health and Nutrition Examination Survey (NHANES II). J Nutr. 1985;115(11):1393-7.
Thane CW, Bates CJ, Prentice A. Zinc and vitamin A intake and status in a national sample of British young people aged 4-18 y. Eur J Clin Nutr. 2004;58(2):363-75.
Saliba LF, Tramonte VL, Faccin Gerson L. Zinc no plasma e eritrocito de atletas profissionais de urna equipe feminina brasileira de voleibol. Rev Nutr. 2006;19(5):581-59
De la Cruz-Góngora V, Gaona B, Villalpando S, Shamah-Levy T, Robledo R. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006. Salud Pública Méx. Apr 2012;54(2):135-45.
Wallach J. "Valores Normales". En, Interpretación clínica de las pruebas de laboratorio. Tomo I. La Habana: ECIMED; 2012.
Marreiro DN, Fisberg M, Cozzolino SMF. Zinc nutritional status and its relationships with hyperinulinemia in obese children and adolescents. Biol Trace Element Res. 2004;99:137-50.
Griffin IJ, Hicks PD, Liang LK, Abrams SA. Metabolic adaptations to low zinc intakes in premenarcheal girls. Am J Clinical Nutrition. August 2004;80(2):385‒90.
Di Toro A, Marotta A, Todisco N, Ponticiello E, Collini R, Di Lescio R, et al. Unchanged iron and copper and increased zinc in the blood of obese children after two hypocaloric diets. Biol Trace Elem Res. 1997;57(2):97-104.
Ennes Dourado FF, De Sousa Lima VB, Mello Soares NR, Franciscato Cozzolino SM, Do Nascimento Marreiro D. Biomarkers of metabolic syndrome and its relationship with the zinc nutritional status in obese women. Nutr. Hosp. 2011 Jun [citado 2017 Mayo 09];26(3):650-4. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112011000300032&lng=es .
Friedman JM, Halas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763-70.
Mantzaros CS, Prasad AS, Beck FWT, Grabowski S, Kaplan J, Adair C, et al. Zinc may regulate serum leptin concentrations in humans. J Am Coll Nutr. 1998;17(3):270-75.
Marreiro DN, Geloneze B, Tambascia MA, Lerario AC, Halpern A, Cozzolino SM, et al. Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res. 2006;112:109-18.
Konukoglu D, Turhan MS, Ercan M, Serin O. Relationship between plasma leptin and zinc levels and the effect of insulin and oxidative stress on leptin levels in obese diabetic patients. J Nutr Biochem. 2004;15:757-60.
Alshammari E, Suneetha E, Adnan M, Khan S, Alazzeh A. Growth Profile and Its Association with Nutrient Intake and Dietary Patterns among Children and Adolescents in Hail Region of Saudi Arabia. BioMed Research International. 2017 [Cited 2017 April 16]. Availed: https://doi.org/10.1155/2017/5740851
Holgado M, González JM, De Luis, Macías NJF. Teorías sobre el envejecimiento: revisión. Rev Esp Geriatr Gerontol. 1994;29(2):84-92.
Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int. 2009;84:45-55.
Portal-Núñez S, De la Fuente M, Díez A, Esbrit L. El estrés oxidativo como posible diana terapéutica en la osteoporosis asociada al envejecimiento. Rev Osteoporos Metab Miner. 2016 Dic [citado 2017 Mayo 18];8(4):138-46. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1889-836X2016000400007&lng=es
Spiteller G. Is lipid peroxidation of polyunsaturated acids the only source of free radicals that induce aging and age-related diseases? Rejuvenation Res. 2010;13(1):91-103.
Khan SR. Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res. 2012;40(2):95-112.
Wong CP, Ho E. Zinc and its role in age-related inflammation and immune dysfunction. Mol Nutr Food Res. 2012;56(1):77-87.
Prasad AS. Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol. 2012;26(2-3):66-9.
Cruz Manzano E, Céspedes Miranda E, García Piñeiro JC, Sánchez Domínguez E, Paredes Pérez MC, Álvarez Ramírez D, et al. Estado antioxidante e indicadores de daño oxidativo de una población de ancianos de Las Tunas. Rev Cubana Invest Bioméd [Internet]. 2004 Jun [citado 2017 Jun 09];23(2):92-7. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002004000200005&lng=es
Queiroz de MAC, Almeida MG, Teixeira de Lima OV, Azevedo ND, Costa Lima K, Dos Santos TL, et al. Alteraciones en el Metabolismo del Zinc Relacionadas a la Edad. Rev Chil Nutr. 2008 [citado 2017 Mayo 09];35(2):116-21. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-75182008000200005&lng=es