2018, Number 2
<< Back Next >>
Biotecnol Apl 2018; 35 (2)
Analysis of genetic polymorphism in wild Nicotiana species and Cuban cultivated tobacco (Solanaceae) through AFLP
Domínguez Y, Peréz-Álvarez S, Magallanes-Tapia MA, Chávez-Medina JA, Héctor-Ardisana EF
Language: English
References: 36
Page: 2201-2205
PDF size: 359.24 Kb.
ABSTRACT
Wild Nicotiana species are commonly used in tobacco’s breeding programs to obtain cultivars of enhanced productivity,
and to improve its tolerance or resistance to diseases or different types of stress. In Cuba, tobacco production
is one of the main sources of economic income and during the last decades several new tobacco varieties
have been generated, being essential to study their genetic background for better crop management. In this work,
the genetic polymorphism of four Cuban varieties of Nicotiana tabacum L. and six wild species used in Cuban
tobacco breeding programs were assessed through AFLP analysis. Polymorphic profiles were obtained with four
selective primers combinations (EcoR I/Mse I) among the studied accessions. A total of 203 polymorphic bands
(57.79 %) were used for cluster analysis (UPGMA) based on genetic similarity and genetic distance matrices. A
common group was detected, comprising all the cultivated varieties that showed high genetic similarity (0.87446-
0.93920) according to the Nei and Li’s distance measure, whereas wild species showed the highest genetic diversity.
It was also possible to identify some bands shared among cultivated accession as specific markers for the
analyzed Cuban cultivated tobacco. Our results indicate that AFLP analysis effectively detects the genetic diversity
at levels enough to differentiate wild species of Nicotiana from Cuban varieties of N. tabacum, even though a narrow
genetic diversity was present in Cuban varieties. All the accessions were distinguished through AFLP analysis.
REFERENCES
Clarkson JJ, Knapp S, Garcia VF, Olmstead RG, Leitch AR, Chase MW. Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol. 2004;33(1):75-90.
Gerstel DU. Evolutionary problems in some polyploid crop plants. Hereditas. 1966;2:481-504.
Goodspeed TH. The genus Nicotiana. Chronica Botanica. 1954;16:1-536.
Valdés M, González C, Lara RM, Román MI, Hernández Y, Hernández RM, Cabrera M, et al. Diversidad genética de especies silvestres del género Nicotiana I: caracterización mediante marcadores bioquímicos. Rev Protección Veg. 2010;25:88-97.
Valdés M, Hernández Y, Vázquez A, Piñero D, González L. Diversidad genética de especies silvestres del género Nicotiana II: caracterización molecular mediante marcadores RAPD. Rev Protección Veg. 2010;25:166-73.
Pérez S, Cabezas D, Domínguez Y, Coto O, García H. Evaluación genómica de los genes pr1 y tctp en especies y variedades de tabaco (Nicotiana tabacum L.). Rev Protección Veg. 2011;26:164-9.
García V, Santana N, García H, Mena E. ‘Corojo 2006’: nueva variedad cubana de tabaco negro (Nicotiana tabacum L.). Cult Trop. 2013;34(2):45.
García V, Santana N, Mena E. ‘Burley Pinar 2010’: primer cultivar cubano de tabaco Burley resistente al marchitamiento por Fusarium (Fusarium oxysporum) y a otras enfermedades de importancia en el cultivo. Cult Trop. 2015;36(2):91.
García H, García V, Pino LA, Espino E. ‘Burley Habana-13’ primera variedad comercial obtenida en Cuba por cultivo de anteras con resistencia al moho azul (Peronospora tabacina), pata prieta (Phytophtora parasitica) y al virus del mosaico del tabaco (VMT). Cubatabaco. 1999;1:49-54.
Espino E. Resultados de los experimentos de regionalización de variedades (2001-2002). Cubatabaco. 2003;4:61-76.
Julio E, Verrier JL, Dorlhac de Borne F. Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet. 2006;112(2):335-46.
Ren N, Timko MP. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome. 2001;44(4):559-71.
Zhang HY, Liu XZ, Li TS, Yang YM. Genetic diversity among flue-cured tobacco (Nicotiana tabacum L.) revealed by amplified fragment length polymorphism. Bot Stud. 2006;47:223-9.
Sarala K, Rao RVS. Genetic diversity in Indian FCV and burley tobacco cultivars. J Genet 2008;87(2):159-63.
Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11-5.
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology. 5th ed. New York, NY, USA: Wiley. 2002. p. 250.
Vos P, Hogers R, Bleeker M, Reijans M, Lee TVD, Hornes M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407-14.
Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 1979;76:5269-73.
Sokal RR. Principles and practices of numerical taxonomy. Taxon. 1963;2(5):190-9.
Skroch P, Tivang J, Nienhuis J. Analysis of genetic relationships using RAPD marker data. In: The American Society for Horticultural Science and American Genetic Association, editors. Applications of RAPD technology to plant breeding. Joint plant breeding symposia series (Minneapolis: Crop Science Society of America); 1992. p. 26-30.
Hampl V, Pavlícek J, Flegr J. Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int J Syst Evol Micr 2001;51:731-5.
Felsenstein J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. 1985;39(4):783-91.
Petit M, Lim KY, Julio E, Poncet C, Dorlhac de Borne F, Kovarik A, et al. Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Genet Genomics. 2007;278(1):1-15.
Zhang HY, Liu XZ, He CS, Yang YM. Genetic diversity among flue-cured tobacco cultivars based on RAPD and AFLP markers. Braz Arch Biol Techn. 2008;51:1097-1101.
Mehrotra S, Goyal V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinformatics. 2014;12(4):164-71.
Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, et al. Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot. 2003;92(1):107-27.
Knapp S, Chase MW, Clarkson JJ. Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon. 2004;53:73-82.
Lim KY, Matyasek R, Kovarik A, Fulnecek J, Leitch AR. Molecular cytogenetics and tandem repeat sequence evolution in the allopolyploid Nicotiana rustica compared with diploid progenitors N. paniculata and N. undulata. Cytogenet Genome Res. 2005;109(1-3): 298-309.
Lim KY, Kovarik A, Matyáçek R, Chase MW, Knapp S, McCarthy E, Clarkson JJ, Leitch AR. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant J. 2006;48:907-19.
Renny-Byfield S, Chester M, Kovarik A, Le Comber SC, Grandbastien MA, Deloger M, et al. Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol. 2011;28(10): 2843-54.
Darvishzadeh R, Gholizadeh S, Hatami- Maleki H, Abdollahi B, Bernousi I. Study on genetic diversity among Iranian water pipe’s tobacco (Nicotiana spp.) varieties by using simple sequence repeat markers. Bulgarian J Agr Sci. 2013;19(3):557-62.
Al-Sadi AM, Al-Moqbali HS, Al-Yahyai RA, Al-Said FA. AFLP data suggest a potential role for the low genetic diversity of acid lime (Citrus auriantifolia Swingle) in Oman in the outbreak of witches’ broom disease of lime. Euphytica. 2012;188:285-97.
Kondetti P, Jawali N, Apte SK, Shitole MG. Comparative study of genetic diversity in Indian soybean (Glycine max L. Merr.) by AP-PCR and AFLP. Ann Biol Res. 2012; 3:3825-37.
Zhang Z, van Parijs FR, Xiao B. The status of AFLP in the genomics era and a pipeline for converting AFLPs into single-locus markers. Mol Breeding. 2014;34:1245-60.
Denduangboripant J, Piteekan T, Nantharat M. Genetic polymorphism between tobacco cultivar-groups revealed by amplified fragment length polymorphism analysis. J Agri Sci. 2010;2:41-8.
Dadras AR, Sabouri H, Nejad GM, Sabouri A, Shoai-Deylami M. Association analysis, genetic diversity and structure analysis of tobacco based on AFLP markers. Mol Biol Rep. 2014;41(5):3317-29.