2018, Number 1
<< Back Next >>
Biotecnol Apl 2018; 35 (1)
Fermentative behavior of the Candida stellata yeast under different aeration conditions
Estela-Escalante WD, Cosco-Salguero GA, Quillama-Polo EL, Rychtera M
Language: English
References: 47
Page: 1211-1217
PDF size: 381.01 Kb.
ABSTRACT
The influence of aeration on the fermentative activity of Candida stellata RIVE 3-16-1 was studied. The strain was cultured either in Erlenmeyer flasks or a bioreactor containing sterilized and aroma-removed apple juice. Cultures in Erlenmeyer flasks were done under shaken or static condition, whereas in the bioreactor, a constant air flow regime was kept. Chemical compounds produced during fermentation were determined by GC and HPLC. The agitation of Erlenmeyer flasks increased the production of total higher alcohols as compared to static culture and enhanced dramatically the ethyl acetate production. Meanwhile, the production of acetic acid and glycerol were higher under static culture. Bioreactor fermentation at constant air flow was important to visualize the effect of oxygen on the production of compounds and its impact in the quality of alcoholic beverages. It is reported a specific growth rate of 0.13 h-1. Aeration promoted the cell growth affecting the ethanol yield. At the end of culture, malic acid naturally present in apple juice and the ethanol produced were consumed after sugar depletion. Moreover, the acetic acid produced at the end of the fermentation served as carbon source too. The best results in terms of acceptability of the fermented beverages were obtained when cultivated statically.
REFERENCES
Estela-Escalante W.D, Rychtera M, Melzoch K, Guerrero-Ochoa M.R. Influencia de la aireación en la actividad fermenRESEARCH tativa de Kloeckera apiculata durante la fermentación de jugo de manzana. Acta Biol Colombiana. 2012;17(2):309-22.
Estela-Escalante W.D, Rychtera M, Melzoch K, Hatta-Sakoda B, Ludeña-Cervantes Z, Sarmiento-Casavilca V, et al. Actividad fermentativa de Saccharomycodes ludwigii y evaluación de la síntesis de compuestos de importancia sensorial durante la fermentación de jugo de manzana. TIP. 2011;14(1):12-23.
Estela-Escalante W, Rychtera M, Melzoch K, Quillama-Polo E, Hatta-Sakoda B. Estudio de la actividad fermentativa de Hansenula anomala y producción de compuestos químicos de importancia sensorial. Rev Peru Biol. 2011;18(3):325-34.
Estela-Escalante W, Rychtera M, Melzoch K, Hatta-Sakoda B, Quillama-Polo E, Ludeña-Cervantes Z, et al. Actividad fermentativa de Hanseniaspora uvarum y su importancia en la producción de bebidas fermentadas. Rev Soc Venezolana Microbiol. 2011;31:57-63.
Englezos E, Rantsiou K, Torchio F, Rolle L, Gerbi V, Cocolin L. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: Physiological and molecular characterizations. Int J Food Microbiol. 2015;199:33-40.
Estela-Escalante WD, Rosales-Mendoza S, Moscosa-Santillán M, González-Ramírez JE. Evaluation of the fermentative potential of Candida zemplinina yeasts for craft beer fermentation. J Inst Brew. 2016;122:530-5.
Estela-Escalante WD, Moscosa-Santillán M, González-Ramírez JE, Rosales-Mendoza S. Evaluation of the potential production of ethanol by Candida zemplinina yeast with regard to beer fermentation. J Am Soc Brew Chem. 2017;75(2):130-5.
Mora J, Mulet A. Effects of some treatments of grape juice on the population and growth of yeast species during fermentation. Am J Enol Viticult. 1991;42:133-6.
Jolly NP, Augustyn OPH, Pretorius IS. The occurrence of non-Saccharomyces species over three vintages in four vineyards and grape musts from four production regions of the Western Cape, South Africa. South Afr J Enol Viticult. 2003;24:35-42.
Ciani M, Ferraro L. Combined use of immobilized Candida stellata cells and Saccharomyces cerevisiae to improve the quality of wines. J Appl Microbiol. 1998;85:247-54.
Magyar I, Toth T. Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiol. 2011;28:94-100.
Ciani M, Ferraro L, Fatichenti F. Influence of glycerol production on the aerobic and anaerobic growth of the wine yeast Candida stellata. Enz Microb Technol. 2000;27:698-703.
Rodicio R, Heinisch JJ. Sugar metabolism by Saccharomyces and non- Saccharomyces yeasts. In: Helmut-Konig H, Unden G, Frohlich J (Editors). Biology of microorganisms on grapes, in must and in wine. Berlin Heidelberg: Springer-Verlag; 2009. p. 113-34.
Van Dijken JP, Scheffers WA. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev. 1986;32:199-224.
Verduyn C. Physiology of yeasts in relation to biomass yields. Antonie van Leeuwenhoek. 1991;60:325-53.
Ribereau-Gayon P, Dubourdieu D, Doneche B, Lonvaud A. Biochemistry of alcoholic fermentation and metabolic pathways of wine yeasts. In: Handbook of Enology. The Microbiology of Wine and Vinifications. New York: John Wiley and Sons; 2000. p. 51-74.
Suomalainen H. Yeast esterase and aroma esters in alcoholic beverages. J Inst Brew. 1981;87:296-300.
Nordstrom K. Formation of ethyl acetate in fermentation with brewer’s yeast. III. Participation of coenzyme A. J Inst Brew. 1962;68:398-407.
Yoshioka K, Hashimoto H. Cellular fatty acid and ester formation by brewers’ yeast. Agr Biol Chem. 1983;47:2287-94.
Hammond JRM. Brewer’s yeasts. In: Rose AH, Harrison JS (Editors). The Yeast. Yeast technology (vol. 5). London: Academic Press; 1993. p. 7–67.
Barker RL, Irwin JA, Murray CR. The relationship bewteen fermentation variables and flavour volatiles by direct gas chromatographic injection of beer. Master Brewers Assoc Am Tech Quart. 1992;29:11-7.
Downing DL. Apple Cider. In: Donald LD (Editor). Processed Apple Products. New York: Van Nostrand Reinhold Publisher. USA; 1989. p. 169-188.
Su SK, Wiley RC. Changes in apple juice flavor compounds during processing. J Food Sci. 1998;63(4):688-69.
Estela-Escalante WD, Rychtera M, Melzoch K, Hatta-Sakoda B. Effect of aeration on the fermentative activity of Saccharomyces cerevisiae cultured in apple juice. Rev Mexicana Ing Quím. 2012;11(2):211-26.
Ortega C, Lopez R, Cacho J, Ferreira V. Fast analysis of important wine volatile compounds: Development and validation of a new method based on gas chromatography-flame ionization detection analysis of dichloromethane micro extracts. J Chrom A. 2001;923:205-14.
Meilgaard M, Civille GV, Carr BT. Sensory Evaluation Techniques. 4rd edition. Boca Raton, New York: CRC Press; 2006. p. 22-35.
Gupta A, Rao G.A. Study of oxygen transfer in shake flasks using a noninvasive oxygen sensor. Biotechnol Bioeng. 2003;84(3):351-8.
Cabranes C, Moreno J, Mangas JJ. Cider production with immobilized Leuconostoc oenos. J Inst Brew. 1998;4:127-30.
Souci SW, Fachmann W, Kraut H. Juices from fruits and berries: Food composition and nutrition tables. 6th edition. Stuttgart: Scientific publishers; 2000. p. 13-52.
Wang L, Xu Y, Zhao G, Li J. Rapid analysis of flavor volatiles in apple wine using Headspace Solid-Phase microextraction. J Inst Brew. 2004;110(1):57-65.
Picinelli A, Suarez B, Moreno J, Rodríguez R, Caso-García LM, Mangas JJ. Chemical characterization of Asturian cider. J Agr Food Chem. 2000;48:3997- 4002.
Suarez-Valles B, Pando-Bedrinana R, Fernandez-Tascon N, Gonzales-Garcia A, Rodríguez-Madrera R. Analytical differentiation of cider inoculated with yeast (Saccharomyces cerevisiae) isolated from Asturian (Spain) apple juice. LWT-Food Sci Technol. 2005;38:455-61.
Jarvis B, Forster MJ, Kinsella WP. Factors affecting the development of cider flavour. J Appl Bacteriol. 1995;79:5S-18S.
Ciani M, Maccarelli F. Oenological properties of non-Saccharomyces yeasts associated with winemaking. World J Microbiol Biotechnol. 1998;14:199-203.
Prior BA, Toh TH, Jolly N, Baccari C, Mortimer RK. Impact of yeast breeding for elevated glycerol production on fermentation activity and metabolite formation in Chardonnay. South Afr J Enology Viticulture. 2000;21:92-9.
Nieuwoudt HH, Prior BA, Pretorius IS, Bauer FF. Glycerol in South African table wines: an assessment of its relationship to wine quality. South Afr J Enol Viticult. 2002;23:22-30.
Swiegers JH, Pretorius IS. Yeast modulation of wine flavour. Adv Appl Microbiol. 2005;57:131-75.
Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS. Yeast and bacterial modulation of wine aroma and flavour. Austr J Grape Wine Res. 2005;11:139-73.
Rapp A, Mandery H. New progress in wine and wine research. Experientia. 1986;42(8):873-84.
Ribereau-Gayon P, Dubourdieu D, Doneche B. Biochemistry of alcoholic fermentation and metabolic pathways of wine yeasts. In: Handbook of enology. The microbiology of wine and vinifications. Chichester: John Wiley and Sons, Ltd; 2006. p. 74-7.
Ribereau-Gayon P. Wine aroma. In: Charalambous G, Inglett G.E (Editors). Flavour of foods and beverages. NewYork: Academic Press; 1978. p. 362-71.
Dequin S, Salmon JM, Nguyen HV. Wine yeasts. In: Boekhout T, Robert V (Editors). Yeasts in food-beneficial and detrimental aspects. Hamburg: Behr’s Verlag; 2003. p. 389-412.
Dubois P. Les aromes des vins et leurs defauts. Revue Francaise d’Oenologie. 1994;145:27-40.
Coulter AD, Godden PW, Pretorius IS. Succinic acid - How it is formed, what is its effect on titratable acidity, and what factors influence its concentration in wine? Austr New Zealand Wine Ind J. 2004;19:16-25.
Furukawa K, Heinzle E, Dunn IJ. Influence of oxygen on the growth of Saccharomyces cerevisiae in continuous culture. Biotechnol Bioeng. 1983;25(10):2293-317.
Estela-Escalante WD, Rychtera M, Melzoch K, Torres-Ibáñez F, Calixto-Cotos R, Bravo-Araníbar N, et al. Efecto de la aireación en la producción de compuestos volátiles por cultivo mixto de Brettanomyces intermedius y Saccharomyces cerevisiae durante la fermentación de sidra. TIP. 2014;17(1):5-14.
Rosenfeld E, Beauvoit B. Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces From the technological point of view, small amounts of oxygen would be suitable in order to control the production of ethanol and the synthesis of fermentation byproducts.