2006, Number 2
<< Back Next >>
Bioquimia 2006; 31 (2)
Multiresistance to 21 antibiotics by nosocomial Pseudomonas aeruginosa strains
Jane-Castillo V, Ribas-Aparicio RM, Osorio-Carranza L, Aparicio G
Language: Spanish
References: 25
Page: 41-48
PDF size: 100.28 Kb.
ABSTRACT
The resistance profile to 21 antibiotics in 24 strains of
Pseudomonas aeruginosa strains from the Infectology
Hospital of the Mexican Institute of Social Security
(IMSS) in Mexico was performed. The samples were collected
during a period of three months corresponding to
two isolations per week.
P. aeruginosa identification was achieved by microbiological standard procedures. The
susceptibility to 21 antibiotics was investigated by using
the disk diffusion method, and the agar dilution method
for imipenem according to the recommendations of
the Clinical Laboratory and Standards Institute of the
United States of America (CLSI). Fourteen of the 24
strains showed a multiresistant phenotype to 21 antibiotics
tested; while 6 strains showed resistance only to 2
antibiotics. These results indicate that during a three
month period in the hospital under study there was a coexistence of multiresistant and low marker resistance
strains sharing the ecological niche. The most effective
antibiotic against
P. aeruginosa was imipenem. The
minimal inhibitory concentration for imipenem was up
to 64 µg/mL for most of the multiresistant strains. This study demonstrated the presence of 14/24 multiresistant
P. aeruginosa strains over a 3 month period. Our findings emphasize the need to reinforce the measures of infection control related to the use and abuse of antibiotics that favor the selection of
P. aeruginosa strains resistant to antibiotics recommended for treatment.
REFERENCES
Bertrand X, Thouverez M, Patry C, Balvay P, Talon D. Pseudomonas aeruginosa: antibiotic susceptibility and genotypic characterization of strains isolated in the intensive care unit. Clinic Microbiol Infect 2001; 7: 706-708.
George RH. Pseudomonas infection in cystic fibrosis. Arch Dis Child 1987; 62: 438-439.
Govan JRW, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60: 539-574.
Pollack M. Pseudomonas aeruginosa. In: Mandell GL, Bennett JE, Dolin RMD (Eds.). Principles and practice of infections diseases. 5th ed. New York, N.Y. USA: Churchill Livingstone, Inc.; 2000. p.1980-2003.
Saiman L, Siegel J. Infection control in cystic fibrosis. Clin Microbiol Rev 2004; 17: 57-71.
McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 1999; 12: 147-179.
Gibbons A. Exploring new strategies to fight drug resistance microbes. Science 1992; 257: 1036-1064.
Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative Gram-negative bacteria. Clin Infect Dis 1998; 27: 593-599.
Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49: 479-487.
Cavallo JD, Fabre R, Leblane F, Nicolas-Chanoine MH, Thabaut A, Groupe d’Etude de la Resistance de Pseudomonas aeruginosa aux Betalactamines. Antibiotic susceptibility and mechanisms of β-lactam resistance in 1,310 strains of Pseudomonas aeruginosa: a French multicenter study (1996). J Antimicrob Chemother 2000; 46: 133-136.
Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev 2005; 18: 306-325.
Celaya MR, Moreno JN. Estudio bacteriológico y determinación de la sensibilidad a 20 antibióticos, en una población de pacientes atendidos en el Hospital General de México durante el año de 1999. Enf Infec Microbiol 2001; 21: 129-144.
Kriengkauykiat J, Porter E, Lomovskaya O, Wong-Beringer A. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49: 565-570.
Okeke IN, Klugman KP, Bhutta ZA, Duse AG, Jenkins P, O’Brien TF, Pablos-Mendez A, Laxminarayan R. Antimicrobial resistance in developing countries. Part II: strategies for containment. Lancet Infect Dis 2005, 5: 481-493.
Cornejo-Juarez P, Velasquez-Acosta C, Díaz-González A, Volkow-Fernandez P. Trend of antimicrobial drug-susceptibility of blood isolates at an oncological center (1998-2003). Salud Pública Mex 2005, 47: 288-293.
CLSI/NCCLS. Performance standards for antimicrobial disk susceptibility tests. Approved standard. 8th edition. M02-A8. CLSI, Wayne, Philadelphia, USA; 2005.
CLSI/NCCLS. Performance standards for antimicrobial susceptibility testing. Supplement M100-S15. CLSI, Wayne, Philadelphia, USA; 2005.
Aparicio OG. Géneros Pseudomonas, Burkholderia y Stenotrophomonas, En: Lugo de la Fuente G (ed.). Bacteriología Médica. 3a ed. México D.F.; Ediciones Cuéllar: 2005. p. 63-72.
CLSI/NCCLS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard. 6th edition. M07-A6. CLSI, Wayne, Philadelphia, USA; 2005.
Flamm, RK, Weaver MK, Thornsberry C, Jones ME, Karlowsky JA, Sahm DF. Factors associated with relative rates of antibiotic resistance in Pseudomonas aeruginosa isolates tested in clinical laboratories in the United States from 1999 to 2002. Antimicrob Agents Chemother 2004; 48: 2431-2436.
Demko CA, Stern RC, Doershuk CF. Stenotrophomonas maltophilia in cystic fibrosis: incidence and prevalence. Pediatr Pulmonol 1998; 25: 304-308.
Bodmann KF. Current guidelines for the treatment of severe pneumonia and sepsis. Chemotherapy 2005; 51: 227-233.
Neuhauser MM, Weinstien RA, Rdyman R, Danziger LH, Karam G, Quinn JP. Antibiotic resistance among gram-negative bacilli in US intensive care units. JAMA 2003; 289: 885-888.
Migliavacca R, Docquier JD, Mugnaioli C, Amicosante G, Daturi R, Lee K. Simple microdilution test for detection of metallo-β-lactamase production in Pseudomonas aeruginosa. J Clin Microbiol 2002; 40: 4388-4390.
Hemalatha V, Sekar U, Kamat V. Detection of metallo-β-lactamase producing Pseudomonas aeruginosa in hospitalized patients. Indian J Med Res 2005; 122: 148-152.