2018, Number 2
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2018; 21 (2)
The genetic edition system CRISPR/Cas and its use as specific antimicrobial
Chávez-Jacobo VM
Language: Spanish
References: 42
Page: 116-123
PDF size: 770.31 Kb.
ABSTRACT
CRISPR/Cas system constitutes a prokaryotic adaptive immune system against the incorporation of exogenous
genetic material. This immunity system is mediated by a specific nuclease that breaks invasive DNA and
later some particles of the broken DNA are stored to recognize and eliminate similar sequences in the future.
Recently, it was found that the system could be reprogrammed to recognize any DNA sequence and it was
possible to introduce highly specific genetic editions in a huge number of organisms. Furthermore, CRISPR/
Cas system has been adapted for the development of a highly specific strategy in the treatment of infections
caused by antimicrobial-resistant bacteria. In this review it was described in a general manner the biological
origin of CRISPR/Cas system, the mechanism of genetic edition based on it, the employ of the system in
the development of a specific treatment method for bacterial infections, and finally some limitations of the
system were discussed.
REFERENCES
Aminov, R. (2017) History of antimicrobial drug discovery – Major classes and health impact. Biochem. Pharmacol., 133, 4-19. DOI: 10.1016/j.bcp.2016.10.001.
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A. & Horvath, P. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712. DOI: 10.1126/ science.1138140.
Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duporter, X., Fischetti, V. A. & Marraffini, L. A. (2014) Exploiting CRISPR-Cas nucleases to produce sequencespecific antimicrobials. Nat. Biotechnol., 32(11), 1146-1150. DOI: 10.1038/nbt.3043.
Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, D. (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacer of extrachromosomal origin. Microbiology, 151, 2551-2561. DOI: 10.1099/mic.0.28048-0.
Brouns, S. J. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J. H., Snijders, A. P. L., Makarova, K. S., Koonin, E. V. & Oost, J. (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891), 960-964. DOI: 10.1126/ science.1159689.
Charpentier, E. & Marraffini, L. A. (2014) Harnessing CRISPR-cas9 immunity for genetic engineering. Curr. Opin. Microbiol., 19, 114-119. DOI: 10.1016/j.mib.2014.07.001.
Citorik, R. J., Mimee, M. & Lu, T. K. (2014) Sequence- specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol., 32(11), 1141-1145. DOI: 10.1038/ nbt.3011.
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A. & Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823. DOI: 10.1126/science.1231143.
DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J. & Church, G. M. (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res., 41(7), 4336- 4343. DOI: 10.1093/nar/gkt135.
Doudna, J. A. & Charpentier, E. (2014) The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1077- 1088. DOI: 10.1126/science.1258096.
Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U.S.A., 109(39), 2579-2586. DOI: 10.1073/ pnas.1208507109.
Gomaa, A. A., Klumpe, H. E., Luo, M. L., Selle, K., Barrangou, R. & Beisel, C. L. (2014) Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio, 5(1), e00928-13. DOI: 10.1128/mBio.00928-13.
Gratz, S. J., Cummings, A. M., Nguyen, J. N., Hamm, D. C., Donohue, L. K., Harrison, M. M., Wildonger, J. & O´Connor-Giles, K. (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4), 1029-1035. DOI: 10.1534/genetics.113.152710.
Groenen, P. M. A., Bunschoten, A. E., Soolingen, D. & Embden, J. D. A. (1993) Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by novel typing method. Mol. Microbiol., 10(5), 1057-1065. DOI: 10.1111/j.1365-2958.1993.tb00976.x.
Horvath, P. & Barrangou, R. (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962), 167-170. DOI: 10.1126/science.1179555.
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 169(12), 5429-5433. DOI: 10.1128/jb.169.12.5429-5433.1987.
Jackson, R. N., Golden, S. M., Erp, P. B. G., Carter, J., Westra, E. R., Brouns, S. J. J., Oost, J., Terwilliger, T. C., Read, R. J. & Wiedenheft, B. (2014) Crystal structure of the CRISPR RNAguided surveillance complex from Escherichia coli. Science, 345(6203), 1473-1479. DOI: 10.1126/science.1256328.
Jansen, R., Embden, J. D. A., Gaastra, W. & Schouls, L. M. (2002) Identification of genes that are associated with DNA repair in prokaryotes. Mol. Microbiol., 43(6), 1565-1575. DOI: 10.1046/j.1365-2958.2002.02839.x.
Jiang, W. & Marraffini, L. A. (2015) CRISPR-Cas: New tools for genetic manipulation from bacterial immunity systems. Annu. Rev. Microbiol., 69, 209-228. DOI: 10.1146/annurevmicro- 091014-104441.
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol., 31(3), 233-239. DOI: 10.1038/ nbt.2508.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. & Charpentier, E. (2012) A programmable dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. DOI: 10.1126/science.1225829.
Kim, H. & Kim J. S. (2014) A guide to genome engineering with programmable nucleases. Nat. Rev. Genet., 15(5), 321-334. DOI: 10.1038/nrg3686.
Li, W., Teng, F., Li, T. & Zhou Q. (2013) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR/Cas systems. Nat. Biotechnol., 31(8), 684-686. DOI: 10.1038/nbt.2652.
Maggio, I. & Gonçalves, M. A. F. V. (2015) Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol., 33(5), 280-291. DOI: 10.1016/j. tibtech.2015.02.011.
Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct., 7(1), 1-26. DOI: 10.1186/1745-6150-1-7.
Makarova, K. S., Half, D. H., Barrangou, R., Brouns, S. J. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J. M., Wolf, Y. I., Yakunin, A. F., Oost, J. & Koonin E. V. (2011) Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol., 9(6), 467-477. DOI: 10.1038/nrmicro2577.
Marraffini, L. A. & Sontheimer E. J. (2008) CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science, 322(5909), 1843-1845. DOI: 10.1126/ science.1165771.
Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J. & Almedros, C. (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defense system. Microbiology, 155, 733-740. DOI: 10.1099/mic.0.023960-0.
Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol., 60(2), 174-182. DOI: 10.1007/s00239-004-0046-3.
Mojica, F. J., Díez-Villaseñor, C., Soria, E. & Juez, G. (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol., 36(1), 244-246. DOI: 10.1046/j.1365- 2958.2000.01838.x.
O´Neill, J. (2016) Tackling drug-resistant infections globally: final report and recommendations. Review on antimicrobial resistance. amr-review.org. https://amr-review.org/sites/ default/files/160518_Final%20paper_with%20cover.pdf.
Pourcel, C., Salvignol, G. & Vergnaud, G. (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151, 653-663. DOI: 10.1099/mic.0.27437-0.
Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P. & Siksnys, V. (2011) The Streptococcus thermophilus CRISPR/ Cas system provides immunity in Escherichia coli. Nucleic Acids Res., 39(21), 9275-9282. DOI: 10.1093/nar/gkr606.
Sashital, D. G., Wiedenheft, B. & Doudna, J. A. (2012) Mechanism of foreign DNA selection in bacterial adaptive immune system. Mol. Cell, 46(5), 606-615. DOI: 10.1016/j.molcel.2012.03.020.
Shalem, O., Sanjana, N. E. & Zhang, F. (2015) High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Microbiol., 16(5), 299-311. DOI: 10.1038/nrg3899.
Shuman, S. & Glickman, M. S. (2007) Bacterial DNA repair by nonhomologous end joining. Nat. Rev. Microbiol., 5(11), 852-861. DOI: 10.1038/nrmicro1768.
Spizek, J. & Havlicek, V. (2015) Tackling antibiotic resistance. In: Sanchez, S., Demian, A. L. (Eds.), Antibiotics: Current innovations and future trends. Caister Academic Press, Norfolk, UK. 2015, pp. 83-93. ISBN: 978-1-908230-54-6.
Waltz, E. (2016). CRISPR-edited crops free to enter market, skip regulation. Nat. Biotechnol., 34(6), 582. DOI: 10.1038/ nbt0616-582.
Wang. H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F. & Jaenisch, R. (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910-918. DOI: 10.1016/j. cell.2013.04.025.
Wang, J., Li, J., Zhao, H., Sheng, G., Wang, M., Yin, M. & Wang Y. (2015A) Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell, 163(4), 840- 853. DOI: 10.1016/j.cell.2015.10.008.
Wang, K., Ouyang, H., Xie, Z., Yao, C., Guo, N., Li, M., Jiao, H. & Pang, D. (2015B). Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci. Rep., 5, e16623. DOI: 10.1038/srep16623.
Yosef, I., Manor, M., Kiro, R. & Qimron, U. (2015) Temperate and lytic bacteriophages programmed to sensitize and kill antibioticresistant bacteria. Proc. Natl. Acad. Sci. U.S.A., 112(23): 7267-7272. DOI: 10.1073/pnas.1500107112.