2018, Número 2
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2018; 21 (2)
El sistema de edición genética CRISPR/Cas y su uso como antimicrobiano específico
Chávez-Jacobo VM
Idioma: Español
Referencias bibliográficas: 42
Paginas: 116-123
Archivo PDF: 770.31 Kb.
RESUMEN
El sistema CRISPR/Cas es parte de un sistema inmune adaptativo que los organismos procariotas desarrollaron
para defenderse de la incorporación de material genético exógeno. Este sistema de inmunidad está
mediado por una nucleasa específica que degrada al DNA invasor y posteriormente algunos fragmentos de
la molécula degradada se almacenan para reconocer y eliminar secuencias similares en el futuro. Recientemente
fue posible reprogramar este sistema para reconocer cualquier secuencia de DNA y realizar ediciones
genéticas en una gran cantidad de organismos de manera altamente específica. El sistema CRISPR/Cas ha
sido adaptado para el desarrollo de una estrategia altamente específica en el tratamiento de infecciones
producidas por bacterias resistentes a antimicrobianos. En esta revisión se describe de manera general el
origen biológico del sistema CRISPR/Cas, el mecanismo de edición genética desarrollado con base en él,
la aplicación del sistema en el desarrollo de un método específico para tratar infecciones bacterianas y
finalmente se discutirán algunas limitaciones del sistema.
REFERENCIAS (EN ESTE ARTÍCULO)
Aminov, R. (2017) History of antimicrobial drug discovery – Major classes and health impact. Biochem. Pharmacol., 133, 4-19. DOI: 10.1016/j.bcp.2016.10.001.
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A. & Horvath, P. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712. DOI: 10.1126/ science.1138140.
Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duporter, X., Fischetti, V. A. & Marraffini, L. A. (2014) Exploiting CRISPR-Cas nucleases to produce sequencespecific antimicrobials. Nat. Biotechnol., 32(11), 1146-1150. DOI: 10.1038/nbt.3043.
Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, D. (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacer of extrachromosomal origin. Microbiology, 151, 2551-2561. DOI: 10.1099/mic.0.28048-0.
Brouns, S. J. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J. H., Snijders, A. P. L., Makarova, K. S., Koonin, E. V. & Oost, J. (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891), 960-964. DOI: 10.1126/ science.1159689.
Charpentier, E. & Marraffini, L. A. (2014) Harnessing CRISPR-cas9 immunity for genetic engineering. Curr. Opin. Microbiol., 19, 114-119. DOI: 10.1016/j.mib.2014.07.001.
Citorik, R. J., Mimee, M. & Lu, T. K. (2014) Sequence- specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol., 32(11), 1141-1145. DOI: 10.1038/ nbt.3011.
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A. & Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823. DOI: 10.1126/science.1231143.
DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J. & Church, G. M. (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res., 41(7), 4336- 4343. DOI: 10.1093/nar/gkt135.
Doudna, J. A. & Charpentier, E. (2014) The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1077- 1088. DOI: 10.1126/science.1258096.
Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U.S.A., 109(39), 2579-2586. DOI: 10.1073/ pnas.1208507109.
Gomaa, A. A., Klumpe, H. E., Luo, M. L., Selle, K., Barrangou, R. & Beisel, C. L. (2014) Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio, 5(1), e00928-13. DOI: 10.1128/mBio.00928-13.
Gratz, S. J., Cummings, A. M., Nguyen, J. N., Hamm, D. C., Donohue, L. K., Harrison, M. M., Wildonger, J. & O´Connor-Giles, K. (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4), 1029-1035. DOI: 10.1534/genetics.113.152710.
Groenen, P. M. A., Bunschoten, A. E., Soolingen, D. & Embden, J. D. A. (1993) Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by novel typing method. Mol. Microbiol., 10(5), 1057-1065. DOI: 10.1111/j.1365-2958.1993.tb00976.x.
Horvath, P. & Barrangou, R. (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962), 167-170. DOI: 10.1126/science.1179555.
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 169(12), 5429-5433. DOI: 10.1128/jb.169.12.5429-5433.1987.
Jackson, R. N., Golden, S. M., Erp, P. B. G., Carter, J., Westra, E. R., Brouns, S. J. J., Oost, J., Terwilliger, T. C., Read, R. J. & Wiedenheft, B. (2014) Crystal structure of the CRISPR RNAguided surveillance complex from Escherichia coli. Science, 345(6203), 1473-1479. DOI: 10.1126/science.1256328.
Jansen, R., Embden, J. D. A., Gaastra, W. & Schouls, L. M. (2002) Identification of genes that are associated with DNA repair in prokaryotes. Mol. Microbiol., 43(6), 1565-1575. DOI: 10.1046/j.1365-2958.2002.02839.x.
Jiang, W. & Marraffini, L. A. (2015) CRISPR-Cas: New tools for genetic manipulation from bacterial immunity systems. Annu. Rev. Microbiol., 69, 209-228. DOI: 10.1146/annurevmicro- 091014-104441.
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol., 31(3), 233-239. DOI: 10.1038/ nbt.2508.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. & Charpentier, E. (2012) A programmable dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821. DOI: 10.1126/science.1225829.
Kim, H. & Kim J. S. (2014) A guide to genome engineering with programmable nucleases. Nat. Rev. Genet., 15(5), 321-334. DOI: 10.1038/nrg3686.
Li, W., Teng, F., Li, T. & Zhou Q. (2013) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR/Cas systems. Nat. Biotechnol., 31(8), 684-686. DOI: 10.1038/nbt.2652.
Maggio, I. & Gonçalves, M. A. F. V. (2015) Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol., 33(5), 280-291. DOI: 10.1016/j. tibtech.2015.02.011.
Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct., 7(1), 1-26. DOI: 10.1186/1745-6150-1-7.
Makarova, K. S., Half, D. H., Barrangou, R., Brouns, S. J. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J. M., Wolf, Y. I., Yakunin, A. F., Oost, J. & Koonin E. V. (2011) Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol., 9(6), 467-477. DOI: 10.1038/nrmicro2577.
Marraffini, L. A. & Sontheimer E. J. (2008) CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science, 322(5909), 1843-1845. DOI: 10.1126/ science.1165771.
Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J. & Almedros, C. (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defense system. Microbiology, 155, 733-740. DOI: 10.1099/mic.0.023960-0.
Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol., 60(2), 174-182. DOI: 10.1007/s00239-004-0046-3.
Mojica, F. J., Díez-Villaseñor, C., Soria, E. & Juez, G. (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol., 36(1), 244-246. DOI: 10.1046/j.1365- 2958.2000.01838.x.
O´Neill, J. (2016) Tackling drug-resistant infections globally: final report and recommendations. Review on antimicrobial resistance. amr-review.org. https://amr-review.org/sites/ default/files/160518_Final%20paper_with%20cover.pdf.
Pourcel, C., Salvignol, G. & Vergnaud, G. (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151, 653-663. DOI: 10.1099/mic.0.27437-0.
Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P. & Siksnys, V. (2011) The Streptococcus thermophilus CRISPR/ Cas system provides immunity in Escherichia coli. Nucleic Acids Res., 39(21), 9275-9282. DOI: 10.1093/nar/gkr606.
Sashital, D. G., Wiedenheft, B. & Doudna, J. A. (2012) Mechanism of foreign DNA selection in bacterial adaptive immune system. Mol. Cell, 46(5), 606-615. DOI: 10.1016/j.molcel.2012.03.020.
Shalem, O., Sanjana, N. E. & Zhang, F. (2015) High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Microbiol., 16(5), 299-311. DOI: 10.1038/nrg3899.
Shuman, S. & Glickman, M. S. (2007) Bacterial DNA repair by nonhomologous end joining. Nat. Rev. Microbiol., 5(11), 852-861. DOI: 10.1038/nrmicro1768.
Spizek, J. & Havlicek, V. (2015) Tackling antibiotic resistance. In: Sanchez, S., Demian, A. L. (Eds.), Antibiotics: Current innovations and future trends. Caister Academic Press, Norfolk, UK. 2015, pp. 83-93. ISBN: 978-1-908230-54-6.
Waltz, E. (2016). CRISPR-edited crops free to enter market, skip regulation. Nat. Biotechnol., 34(6), 582. DOI: 10.1038/ nbt0616-582.
Wang. H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F. & Jaenisch, R. (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910-918. DOI: 10.1016/j. cell.2013.04.025.
Wang, J., Li, J., Zhao, H., Sheng, G., Wang, M., Yin, M. & Wang Y. (2015A) Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell, 163(4), 840- 853. DOI: 10.1016/j.cell.2015.10.008.
Wang, K., Ouyang, H., Xie, Z., Yao, C., Guo, N., Li, M., Jiao, H. & Pang, D. (2015B). Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci. Rep., 5, e16623. DOI: 10.1038/srep16623.
Yosef, I., Manor, M., Kiro, R. & Qimron, U. (2015) Temperate and lytic bacteriophages programmed to sensitize and kill antibioticresistant bacteria. Proc. Natl. Acad. Sci. U.S.A., 112(23): 7267-7272. DOI: 10.1073/pnas.1500107112.