2018, Number S2
Synthesis means to obtain nanomaterials employed for cancer treatment by magnetic hyperthermia
Language: Spanish
References: 63
Page: 43-50
PDF size: 575.97 Kb.
ABSTRACT
The present bibliographical compilation shows how different nanomaterials are used in the hyperthermia treatment for cancer, among which, the most employed are the materials with magnetic properties. Due to their superparamagnetic behavior, they can be exposed to a magnetic field, which in turn produces an increase in temperature up to a maximum of 46 °C. This temperature causes the elimination of tumor cells; this process is known as magnetic hyperthermia. The problem to be solved from the point of view of the synthesis is to find a simple method which allows a control of particle size to get the desired biocompatibility properties. It is concluded that the obtaining of materials for hyperthermia applications is given by various methods; among which stand the solgel method, coprecipitation, thermal decomposition, and others. The latter is the best option because it allows a control of particle size. In addition, it is possible to improve the desired biocompatibility or magnetic properties by surface coatings or doping.REFERENCES
Arriortua, O. K., Garaio, E., de la Parte, B. H., Insausti, M., Lezama, L., Plazaola, F., García, J. A., Aizpurua, J. M., Sagartzazu, M., Irazola, M., Etxebarria, N., García-Alonso, I., Saiz- Lopez, A. & Echevarria-Uraga, J. J. (2016). Antitumor magnetic hyperthermia induced by RGD-functionalized Fe3O4 nanoparticles, in an experimental model of colorectal liver metastases. Beilstein Journal of Nanotechnology, 7, 1532–1542. https://doi.org/10.3762/bjnano.7.147
Arteaga-Cardona, F., Santillan-Urquiza, E., Pal, U., Mendoza-Álvarez, M. E., Torres-Duarte, C., Cherr, G. N., de la Presa, P. & Méndez- Rojas, M. A. (2017). Unusual variation of blocking temperature in bi-magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 441, 417–423. https://doi.org/10.1016/j. jmmm.2017.06.024
Bear, J. C., Yu, B., Blanco-Andujar, C., McNaughter, P. D., Southern, P., Mafina, M.-K., Pankhurst, Q. A. & Parkin, I. P. (2014). A low cost synthesis method for functionalised iron oxide nanoparticles for magnetic hyperthermia from readily available materials. Faraday Discussions, 175, 83–95. https://doi.org/10.1039/C4FD00062E
Cotica, L. F., Freitas, V. F., Silva, D. M., Honjoya, K., Santos, I. A., Fontanive, C. P., Khalil, N. M., Mainardes, R. M., Kioshima, E. S., Guo, R. & Bhalla, A. S. (2014). Thermal decomposition synthesis and assessment of effects on blood cells and in vivo damages of cobalt ferrite nanoparticles. Journal of Nano Research, 28, 131–140. https://doi.org/10.4028/www.scientific. net/JNanoR.28.131
Feuser, P. E., dos Santos Bubniak, L., dos Santos Silva, M. C., da Cas Viegas, A., Fernandes, A. C., Ricci-Junior, E., Nele, M., Tedesco, A.C., Sayer, C. & de Araújo, P. H. H. (2015). Encapsulation of magnetic nanoparticles in poly(methyl methacrylate) by miniemulsion and evaluation of hyperthermia in U87MG cells. European Polymer Journal, 68, 355–365. https://doi. org/10.1016/j.eurpolymj.2015.04.029
Galli, M., Guerrini, A., Cauteruccio, S., Thakare, P., Dova, D., Orsini, F., Arosio, P., Carrara, C., Sangregorio, C., Lascialfari, A., Maggioni, D. & Licandro, E. (2017). Superparamagnetic iron oxide nanoparticles functionalized by peptide nucleic acids. RSC Advances, 7(25), 15500–15512. https://doi.org/10.1039/ C7RA00519A
Jasso-Teran, R. A., Cortes-Hernandez, D. A., Sanchez-Fuentes, H. J., Reyes-Rodriguez, P. Y., de-Leon-Prado, L. E., Escobedo- Bocardo, J. C. & Almanza-Robles, J. M. (2017). Synthesis, characterization and hemolysis studies of Zn(1-x)CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia treatment applications. Journal of Magnetism and Magnetic Materials, 427, 241–244. https://doi.org/10.1016/j.jmmm.2016.10.099
Kanetaka, H., Liu, G., Li, Z., Miyazaki, T., Furuya, M., Kudo, T. & Kawashita, M. (2017). TiO2 microspheres containing magnetic nanoparticles for intra-arterial hyperthermia. Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 105(8), 2308–2314. https://doi.org/10.1002/jbm.b.33765
Múzquiz-Ramos, E. M., Guerrero-Chávez, V., Macías-Martínez, B. I., López-Badillo, C. M. & García-Cerda, L. A. (2015). Synthesis and characterization of maghemite nanoparticles for hyperthermia applications. Ceramics International, 41(1_Part_A), 397–402. https://doi.org/10.1016/j.ceramint.2014.08.083
Rose, L. C., Bear, J. C., McNaughter, P. D., Southern, P., Piggott, R. B., Parkin, I. P., Qi, S. & Mayes, A. G. (2016). A SPION-eicosane protective coating for water soluble capsules: Evidence for on-demand drug release triggered by magnetic hyperthermia. Scientific Reports, 6, 20271. https://doi.org/10.1038/srep20271
Sabale, S., Jadhav, V. & Yu, X.-Y. (2017). Hyperthermia properties of superparamagnetic ferrite (MFe2O4) nanoparticles synthesized via the thermal decomposition method. In Abstracts of Papers, 253rd ACS National Meeting & Exposition, San Francisco, CA, United States, April 2-6, 2017 (p. COLL-762). American Chemical Society.
Shah, R. R., Davis, T. P., Glover, A. L., Nikles, D. E. & Brazel, C. S. (2015). Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 387, 96–106. https://doi.org/10.1016/j.jmmm.2015.03.085
Sharma, R., Thakur, P., Kumar, M., Barman, P. B., Sharma, P. & Sharma, V. (2017). Enhancement in A-B super-exchange interaction with Mn2+ substitution in Mg-Zn ferrites as a heating source in hyperthermia applications. Ceramics International, 43(16), 13661–13669. https://doi.org/10.1016/j. ceramint.2017.07.076
Stefanou, G., Sakellari, D., Simeonidis, K., Kalabaliki, T., Angelakeris, M., Dendrinou-Samara, C. & Kalogirou, O. (2014). Tunable AC magnetic hyperthermia efficiency of Ni ferrite nanoparticles. IEEE Transactions on Magnetics, 50(12), 4601207/1- 4601207/7, 7 . https://doi.org/10.1109/TMAG.2014.2345637
Abenojar, E. C., Wickramasinghe, S., Bas-Concepcion, J., & Samia, A. C. S. (2016). Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Progress in Natural Science: Materials International, 26(5), 440–448. https://doi. org/10.1016/j.pnsc.2016.09.004 2. Arriortua, O. K., Garaio, E., de la Parte, B. H., Insausti, M., Lezama, L., Plazaola, F., García, J. A., Aizpurua, J. M., Sagartzazu, M., Irazola, M., Etxebarria, N., García-Alonso, I., Saiz- Lopez, A. & Echevarria-Uraga, J. J. (2016). Antitumor magnetic hyperthermia induced by RGD-functionalized Fe3O4 nanoparticles, in an experimental model of colorectal liver metastases. Beilstein Journal of Nanotechnology, 7, 1532–1542. https://doi.org/10.3762/bjnano.7.147 3. Arteaga-Cardona, F., Santillan-Urquiza, E., Pal, U., Mendoza-Álvarez, M. E., Torres-Duarte, C., Cherr, G. N., de la Presa, P. & Méndez- Rojas, M. A. (2017). Unusual variation of blocking temperature in bi-magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 441, 417–423. https://doi.org/10.1016/j. jmmm.2017.06.024 4. Bardeen, J., & Brattain, W. H. (1998). The Transistor, a Semiconductor Triode. Proceedings of the IEEE, 86(1), 29–30. https://doi. org/10.1109/JPROC.1998.658753 5. Bear, J. C., Yu, B., Blanco-Andujar, C., McNaughter, P. D., Southern, P., Mafina, M.-K., Pankhurst, Q. A. & Parkin, I. P. (2014). A low cost synthesis method for functionalised iron oxide nanoparticles for magnetic hyperthermia from readily available materials. Faraday Discussions, 175, 83–95. https://doi.org/10.1039/C4FD00062E 6. Bruce, I. J., Taylor, J., Todd, M., Davies, M. J., Borioni, E., Sangregorio, C. & Sen, T. (2004). Synthesis, characterisation and application of silica-magnetite nanocomposites. Journal of Magnetism and Magnetic Materials, 284(1–3), 145–160. https://doi. org/10.1016/j.jmmm.2004.06.032 7. Busch, C. J. (1866). Einfluss heftiger Erysipeln auf organisierte Neubildungen Verhandlungen Des Naturhistorischen Vereins Der Preussischen Rheinlande und Westphalens. C J Andrä (Bonn: Max Cohen und Sohn). 8. Cabuil, V., Dupuis, V., Talbot, D. & Neveu, S. (2011). Ionic magnetic fluid based on cobalt ferrite nanoparticles: Influence of hydrothermal treatment on the nanoparticle size. Journal of Magnetism and Magnetic Materials, 323(10), 1238–1241. https://doi.org/10.1016/j.jmmm.2010.11.013 9. Caetano, B. L., Guibert, C., Fini, R., Fresnais, J., Pulcinelli, S. H., Menager, C. & Santilli, C. V. (2016). Magnetic hyperthermia-induced drug release from ureasil-PEO-γ-Fe2O3 nanocomposites. RSC Advances, 6(68), 63291–63295. https:// doi.org/10.1039/C6RA08127D 10. Callister, W. & Rethwisch, D. (2007). Materials science and engineering: an introduction. Materials Science and Engineering, 94, 1-457. https://doi.org/10.1016/0025--5416(87)90343-0 11. Chan, D. C., Kirpotin, D. B. & Bunn Jr, P. A. (1993). Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. Journal of Magnetism and Magnetic Materials, 122(1-3), 374-378. https:// doi.org/10.1016/0304-8853(93)91113-L 12. Chen, R., Christiansen, M. G., Sourakov, A., Mohr, A., Matsumoto, Y., Okada, S., Jasanoff, A. & Anikeeva, P. (2016). High- Performance Ferrite Nanoparticles through Nonaqueous Redox Phase Tuning. Nano Letters, 16(2), 1345–1351. https://doi. org/10.1021/acs.nanolett.5b04761 13. Cotica, L. F., Freitas, V. F., Silva, D. M., Honjoya, K., Santos, I. A., Fontanive, C. P., Khalil, N. M., Mainardes, R. M., Kioshima, E. S., Guo, R. & Bhalla, A. S. (2014). Thermal decomposition synthesis and assessment of effects on blood cells and in vivo damages of cobalt ferrite nanoparticles. Journal of Nano Research, 28, 131–140. https://doi.org/10.4028/www.scientific. net/JNanoR.28.131 14. Dutz, S. & Hergt, R. (2014). Magnetic particle hyperthermia - A promising tumour therapy? Nanotechnology. Institute of Physics Publishing 25(45) 1-28. https://doi.org/10.1088/0957- 4484/25/45/452001 15. Falk, M.H. & Issels, R.D. (2001). Hyperthermia in oncology. International Journal of Hyperthermia 17, 1-18 https://doi. org/10.1080/02656730150201552 16. Feuser, P. E., dos Santos Bubniak, L., dos Santos Silva, M. C., da Cas Viegas, A., Fernandes, A. C., Ricci-Junior, E., Nele, M., Tedesco, A.C., Sayer, C. & de Araújo, P. H. H. (2015). Encapsulation of magnetic nanoparticles in poly(methyl methacrylate) by miniemulsion and evaluation of hyperthermia in U87MG cells. European Polymer Journal, 68, 355–365. https://doi. org/10.1016/j.eurpolymj.2015.04.029 17. Galli, M., Guerrini, A., Cauteruccio, S., Thakare, P., Dova, D., Orsini, F., Arosio, P., Carrara, C., Sangregorio, C., Lascialfari, A., Maggioni, D. & Licandro, E. (2017). Superparamagnetic iron oxide nanoparticles functionalized by peptide nucleic acids. RSC Advances, 7(25), 15500–15512. https://doi.org/10.1039/ C7RA00519A 18. Gilchrist, R. K., Medal, R., Shorey, W. D., Hanselman, R. C., Parrott, J. C. & Taylor, C. B. (1957). Selective Inductive Heating of Lymph Nodes. Annals of Surgery, 146(4), 596–606. https:// doi.org/10.1097/00000658-195710000-00007 19. Goharkhah, M., Salarian, A., Ashjaee, M. & Shahabadi, M. (2015). Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field. Powder Technology, 274, 258–267. https://doi.org/10.1016/j. powtec.2015.01.031 20. Hall, E. J. & Giaccia, A. J. (2006). Radiobiology for the Radiologist, 6th ed., by Eric J. Hall and Amato J. Giaccia. Radiation Research (Vol. 166), 816-817. https://doi.org/10.1667/RR0771.1 21. Hergt, R., Dutz, S., Müller, R. & Zeisberger, M. (2006). Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. Journal of Physics: Condensed Matter, 18(38), S2919–S2934. https://doi.org/10.1088/0953- 8984/18/38/S26 22. Iqbal, Y., Bae, H., Rhee, I. & Hong, S. (2016). Control of the saturation temperature in magnetic heating by using polyethylene-glycolcoated rod-shaped nickel-ferrite (NiFe2O4) nanoparticles. Journal of the Korean Physical Society, 68(4), 587–592. https:// doi.org/10.3938/jkps.68.587 23. Jasso-Teran, R. A., Cortes-Hernandez, D. A., Sanchez-Fuentes, H. J., Reyes-Rodriguez, P. Y., de-Leon-Prado, L. E., Escobedo- Bocardo, J. C. & Almanza-Robles, J. M. (2017). Synthesis, characterization and hemolysis studies of Zn(1-x)CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia treatment applications. Journal of Magnetism and Magnetic Materials, 427, 241–244. https://doi.org/10.1016/j.jmmm.2016.10.099 24. Jordan, A., Wust, P., Fählin, H., John, W., Hinz, A. & Felix, R. (1993). Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. International Journal of Hyperthermia, 9(1), 51–68. https:// doi.org/10.3109/02656739309061478 25. Kanetaka, H., Liu, G., Li, Z., Miyazaki, T., Furuya, M., Kudo, T. & Kawashita, M. (2017). TiO2 microspheres containing magnetic nanoparticles for intra-arterial hyperthermia. Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 105(8), 2308–2314. https://doi.org/10.1002/jbm.b.33765 26. Kumar, C. S. & Mohammad, F. (2011). Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews. 63(9), 789-808 https://doi. org/10.1016/j.addr.2011.03.008 27. Laurent, S., Dutz, S., Häfeli, U. O. & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166(1–2), 8–23. https://doi.org/10.1016/j.cis.2011.04.003 28. Mahmoudi, M., Sant, S., Wang, B., Laurent, S. & Sen, T. (2011). Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 63(1–2), 24–46. https://doi.org/10.1016/j.addr.2010.05.006 29. Maity, D., Choo, S.-G., Yi, J., Ding, J. & Xue, J. M. (2009). Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. Journal of Magnetism and Magnetic Materials 321(9), 1256-1259. https://doi.org/10.1016/j. jmmm.2008.11.013 30. Mallakpour, S. & Javadpour, M. (2018). Sonochemical assisted synthesis and characterization of magnetic PET/Fe3O4, CA, AS nanocomposites: Morphology and physiochemical properties. Ultrasonics Sonochemistry, 40, 611–618. https:// doi.org/10.1016/J.ULTSONCH.2017.08.006 31. Márquez, A. A. (2005). Los materiales y su biocompatibilidad: hidroxiapatita. Materiales Avanzados, 3, 43–48. Retrieved from http://www.iim.unam.mx/revista/pdf/numero4.pdf#page=44 32. Matsunaga, T., Okamura, Y. & Tanaka, T. (2004). Biotechnological application of nano-scale engineered bacterial magnetic particles. Journal of Materials Chemistry, 14(14), 2099. https:// doi.org/10.1039/b404844j 33. Múzquiz-Ramos, E. M., Guerrero-Chávez, V., Macías-Martínez, B. I., López-Badillo, C. M. & García-Cerda, L. A. (2015). Synthesis and characterization of maghemite nanoparticles for hyperthermia applications. Ceramics International, 41(1_Part_A), 397–402. https://doi.org/10.1016/j.ceramint.2014.08.083 34. Nagesetti, A. & McGoron, A. J. (2016). Multifunctional organically modified silica nanoparticles for chemotherapy, adjuvant hyperthermia and near infrared imaging. Colloids and Surfaces, B: Biointerfaces, 147, 492–500. https://doi.org/10.1016/j. colsurfb.2016.07.048 35. Nemati, Z., Alonso, J., Martinez, L. M., Khurshid, H., Garaio, E., Garcia, J. A., Phan, M. H. & Srikanth, H. (2016). Enhanced Magnetic Hyperthermia in Iron Oxide Nano-Octopods: Size and Anisotropy Effects. Journal of Physical Chemistry C, 120(15), 8370–8379. https://doi.org/10.1021/acs.jpcc.6b01426 36. Padeletti, G. & Fermo, P. (2003). How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the renaissance period. Applied Physics A: Materials Science and Processing, 76(4), 515–525. https://doi.org/10.1007/s00339- 002-1935-1 37. Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics, 36(13), R167–R181. 38. Peiyan, M. A., Zhengyi, F. U., Yanli, S. U. & Jingjing, M. A. (2006). The nano pulverization of traditional Chinese medicine Liuwei Dihuang. Journal of Wuhan University of Technology-Mater. Sci. Ed., 21(2), 105-108. 39. Ramesh, R., Ponnusamy, S. & Muthamizhchelvan, C. (2011). Synthesis and characterization of Fe3O4 nanoparticles for magnetic hyperthermia application. AIP Conference Proceedings, 1347(International Conference on Magnetic Materials, 2010), 19–22. https://doi.org/10.1063/1.3601777 40. Reena, M. A. P., Narayanan, T. N., Sunny, V., Sakthikumar, D., Yoshida, Y., Joy, P. A. & Anantharaman, M. R. (2010). Synthesis of Bio- Compatible SPION-based Aqueous Ferrofluids and Evaluation of RadioFrequency Power Loss for Magnetic Hyperthermia. Nanoscale Research Letters, 5(10), 1706–1711. 41. Reyes Gómez, J. (2003). Aplicación de la técnica sol - gel (1st ed.). Colima, México. Retrieved from http://www.ucol.mx 42. Ring, T. A. (1995). Fundamentals of Ceramic Powder Processing and Synthesis (1st ed.). San Diego, California: Academic Press, Inc. 43. Rose, L. C., Bear, J. C., McNaughter, P. D., Southern, P., Piggott, R. B., Parkin, I. P., Qi, S. & Mayes, A. G. (2016). A SPION-eicosane protective coating for water soluble capsules: Evidence for on-demand drug release triggered by magnetic hyperthermia. Scientific Reports, 6, 20271. https://doi.org/10.1038/srep20271 44. Sabale, S., Jadhav, V. & Yu, X.-Y. (2017). Hyperthermia properties of superparamagnetic ferrite (MFe2O4) nanoparticles synthesized via the thermal decomposition method. In Abstracts of Papers, 253rd ACS National Meeting & Exposition, San Francisco, CA, United States, April 2-6, 2017 (p. COLL-762). American Chemical Society. 45. Shah, R. R., Davis, T. P., Glover, A. L., Nikles, D. E. & Brazel, C. S. (2015). Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 387, 96–106. https://doi.org/10.1016/j.jmmm.2015.03.085 46. Sharma, R., Thakur, P., Kumar, M., Barman, P. B., Sharma, P. & Sharma, V. (2017). Enhancement in A-B super-exchange interaction with Mn2+ substitution in Mg-Zn ferrites as a heating source in hyperthermia applications. Ceramics International, 43(16), 13661–13669. https://doi.org/10.1016/j. ceramint.2017.07.076 47. Siegel, R. W. (1993). Synthesis and properties of nanophase materials. Materials Science and Engineering A, 168(2), 189–197. https:// doi.org/10.1016/0921-5093(93)90726-U 48. Singh, A. & Sahoo, S. K. (2014). Magnetic nanoparticles: A novel platform for cancer theranostics. Drug Discovery Today, 19, 474-481. https://doi.org/10.1016/j.drudis.2013.10.005 49. Sodipo, B. K. & Aziz, A. A. (2013). Sonochemical Synthesis of Silica Coated Super Paramagnetic Iron Oxide Nanoparticles. Materials Science Forum, 756, 74–79. https://doi.org/10.4028/www. scientific.net/MSF.756.74 50. Soleymani, M. & Edrissi, M. (2016). Preparation of manganese-based perovskite nanoparticles using a reverse microemulsion method: biomedical applications. Bulletin of Materials Science, 39(2), 487–490. https://doi.org/10.1007/s12034-016-1164-4 51. Stefanou, G., Sakellari, D., Simeonidis, K., Kalabaliki, T., Angelakeris, M., Dendrinou-Samara, C. & Kalogirou, O. (2014). Tunable AC magnetic hyperthermia efficiency of Ni ferrite nanoparticles. IEEE Transactions on Magnetics, 50(12), 4601207/1- 4601207/7, 7 . https://doi.org/10.1109/TMAG.2014.2345637 52. Sun, Y., Ma, M., Zhang, Y. & Gu, N. (2004). Synthesis of nanometer-size maghemite particles from magnetite. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 245(1–3), 15–19. https://doi.org/10.1016/j.colsurfa.2004.05.009 53. Tkachenko, M. V. & Kamzin, A. S. (2016). Synthesis and properties of hybrid hydroxyapatite–ferrite (Fe3O4) particles for hyperthermia applications. Physics of the Solid State, 58(4), 763–770. https:// doi.org/10.1134/S1063783416040260 54. Vajtai, R. ed., 2013. Springer handbook of nanomaterials. Springer Science & Business Media. 1-1221. https://doi.org/10.1007/978- 3-642-20595-8 55. Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R. & Schlag, P. (2002). Hyperthermia in combined treatment of cancer. The Lancet Oncology, 3(8), 487–497. https://doi.org/10.1016/S1470-2045(02)00818-5 56. Xiao, W., Liu, X., Hong, X., Yang, Y., Lv, Y., Fang, J. & Ding, J. (2015). Magnetic-field-assisted synthesis of magnetite nanoparticles via thermal decomposition and their hyperthermia properties. CrystEngComm., 17(19), 3652–3658. https://doi.org/10.1039/ C5CE00442 57. Yacamán, M.J., Rendon, L., Arenas, J. & Serra Puche, M. C. (1996). Maya Blue Paint: An Ancient Nanostructured Material. Science, 273(5272), 223–225. https://doi.org/10.1126/ science.273.5272.223 58. Yadavalli, T., Jain, H., Chandrasekharan, G. & Chennakesavulu, R. (2016). Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method. AIP Advances, 6(5), 055904/1-055904/7. https://doi. org/10.1063/1.4942951