2018, Número S2
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2018; 21 (S2)
Descontaminación de arsénico, cadmio y plomo en agua por biosorción con Saccharomyces cerevisiae
Moreno-Rivas SC, Ramos-Clamont Montfort G
Idioma: Español
Referencias bibliográficas: 110
Paginas: 51-68
Archivo PDF: 1099.00 Kb.
RESUMEN
La contaminación del agua con metales pesados es un problema potencial de salud pública, debido a su
toxicidad. Los métodos tradicionales de descontaminación se enfocan principalmente a tratar efluentes
industriales con altas concentraciones de metales pesados, pero con desventajas por los altos costos, grandes
espacios de operación y en ocasiones, empleo o generación de otras sustancias tóxicas. Los metales pesados
con mayor toxicidad presentes en el agua son arsénico, cadmio y plomo, cuya exposición crónica puede
dañar diversos órganos y promover el desarrollo de cáncer. La eliminación de estos metales del agua de
consumo con menores concentraciones que aún representen un riesgo a la salud, puede llevarse a cabo
por el fenómeno de biosorción. Los materiales biosorbentes son molecularmente, diversos, económicos y
pueden ser desde biopolímeros hasta biomasa microbiana. Se conoce que algunas cepas de levaduras
han mostrado gran capacidad de remoción de metales pesados en soluciones acuosas, destacando las
del género Saccharomyces, particularmente Saccharomyces cerevisiae. La biosorción con levaduras es una
alternativa prometedora para la eliminación de bajas concentraciones de As
3+, As
5+, Cd
2+ y Pb
2+ en agua de
consumo. Sin embargo, es necesario seguir estudiando las condiciones para su aplicación a gran escala, así
como otras posibilidades que permitan su optimización.
REFERENCIAS (EN ESTE ARTÍCULO)
Achanzar, W. E., Diwan, B. A., Liu, J., Quader, S. T., Webber, M. M., & Waalkes, M. P. (2001). Cadmium-induced Malignant Transformation of Human Prostate Epithelial Cells. Cancer Research, 61(2), 455-458.
Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(12), 2243-2257. http://doi.org/10.1016/j. biortech.2005.12.006
Akar, S. T., Arslan, S., Alp, T., Arslan, D., & Akar, T. (2012). Biosorption potential of the waste biomaterial obtained from Cucumis melo for the removal of Pb2+ ions from aqueous media: equilibrium, kinetic, thermodynamic and mechanism analysis. Chemical Engineering Journal, 185-186, 82-90. http://doi. org/10.1016/j.cej.2012.01.032
Amirnia, S., Ray, M. B., & Margaritis, A. (2015). Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor-biosorption system. Chemical Engineering Journal, 264, 863-872. http://doi.org/10.1016/j.cej.2014.12.016
Arıca, M. Y., Kacar, Y., & Genç, Ö. (2001). Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource technology, 80(2), 121-129.
Arief, V. O., Trilestari, K., Sunarso, J., Indraswati, N., & Ismadji, S. (2008). Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean, 36(12), 937-962. http:// doi.org/10.1002/clen.200800167
Armah, F. A., Quansah, R., & Luginaah, I. (2014). A systematic review of heavy metals of anthropogenic origin in environmental media and biota in the context of gold mining in Ghana. International Scholarly Research Notices, 252148. http://doi. org/10.1155/2014/252148
Arreguín Cortés, F. I., Chávez Guillén, R., Soto Navarro, P. R., & Smedley, P. L. (2010). Una revisión de la presencia de arsénico en el agua subterránea en México. Revista Tláloc AMH, 45, 1-11.
Bandyopadhyay, D., Ghosh, D., Chattopadhyay, A., Firdaus, S. B., Ghosh, A. K., Paul, S., Bhowmik, D., Mishra, S., & Dalui, K. (2014). Lead induced oxidative stress: a health issue of global concern. Journal of Pharmacy Research, 8(9), 1198-1207.
Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361- 377. http://doi.org/10.1016/j.arabjc.2010.07.019
Çabuk, A., Akar, T., Tunali, S. & Gedikli, S. (2007. Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: Equilibrium and mechanism analysis. Chemical Engineering Journal, 131(1), 293-300. DOI: https://doi.org/10.1016/j.cej.2006.12.011
Cañizares-Villanueva, R. O. (2000). Biosorción de metales pesados mediante el uso de biomasa microbiana. Revista Latinoamericana de Microbiología, 42, 131-143.
Central Pollution Control Board, C. P. C. B. (2007). Cadmium an environment toxicant. Recuperado de http://cpcb.nic. in/upload/Newsletters/Newsletters_61_CADMIUM-An EnvironmentToxicant-March-2007.pdf
Chang, J. S., Law, R., & Chang, C. C. (1997). Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water research, 31(7), 1651-1658.
Chassary, P., Vincent, T., Macaskie, L. E., & Guibal, E. (2005). Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy, 76, 131-147. http:// doi.org/10.1016/j.hydromet.2004.10.004
Chowdhury, S., Mazumder, M. A. J., Al-Attas, O., & Husain, T. (2016). Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Science of The Total Environment, 569-570, 476-488. doi:https://doi.org/10.1016/j. scitotenv.2016.06.166
Council of the European Union. (1998). Council Directive 98/83/Ec. Official Journal of the European Communities, L 330, 32-54.
Deng, S., Zhang, G., Chen, S., Xue, Y., Du, Z., & Wang, P. (2016). Rapid and effective preparation of a HPEI modified biosorbent based on cellulose fiber with a microwave irradiation method for enhaced arsenic removal in water. Journal of Materials Chemistry A, 4(41), 15851-15860.
Dhankhar, R., & Hooda, A. (2011). Fungal biosorption - an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467-491. http://doi.org/10.10 80/09593330.2011.572922
Dubey, S. P., Gopal, K., & Bersillon, J. L. (2009). Utility of adsorbents in the purification of drinking water: a review of characterization, efficiency and safety evaluation of various adsorbents. Journal of Environmental Biology, 30(3), 327-332.
Duffus, J. H. (2002). Heavy metals - a meaningless term? (IUPAC Technical Report). Pure Applied Chemistry, 74(5), 793-807.
Esposito, A., Pagnanelli, F., & Vegliò, F. (2002). pH-related equilibria models for biosorption in single metal systems. Chemical Engineering Science, 57, 307-313.
Farhan, S. N., & Khadom, A. A. (2015). Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. International Journal of Industrial Chemistry, 6(2), 119-130. http://doi.org/10.1007/s40090-015-0038-8
FDA. U.S. Food and Drug Administration. (2010). Bottled Water Everywhere: Keeping it Safe. FDA Consumer Health Information, (June), 1-2.
FDA. U.S. Food and Drug Administration. (2015). Beverages. Food for Human Consumption. Recuperado de https://www.accessdata. fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=165.110
FPTCDW (Federal-Provincial-Territorial Committee on Drinking Water) 2006. Guidelines for Canadian Drinking Water Quality. Guideline Technical Document: Arsenic. Health Canada: Ottawa.
Ferreira, V., Koricheva, J., Duarte, S., Niyogi, D. K., & Guérold, F. (2016). Effects of anthropogenic heavy metal contamination on litter decomposition in streams - a meta-analysis. Environmental Pollution, 210, 261–270. http://doi.org/10.1111/brv.12125
Fiol, N., Villaescusa, I., Martínez, M., Miralles, N., Poch, J., & Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Separation and Purification Technology, 50, 132-140. http://doi.org/10.1016/j. seppur.2005.11.016
Fomina, M., & Gadd, G. M. (2014). Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 160, 3-14. http://doi.org/10.1016/j.biortech.2013.12.102
Fosso-Kankeu, E., & Mulaba-Bafubiandi, A. (2014). Review of challenges in the escalation of metal-biosorbing processes for wastewater treatment: Applied and commercialized technologies. African Journal of Biotechnology, 13(17), 1756-1771. http://doi. org/10.5897/AJB2013.13311
Gadd, G. M. (2008). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13-28. http://doi.org/10.1002/jctb.1999
García-Esquinas, E., Pollan, M., Umans, J. G., Francesconi, K. A., Goessler, W., Guallar, E., Howard, B., Farley, J., Best, L. G., & Navas-Acien, A. (2013). Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiology Biomarkers and Prevention, 22(11), 1944-1953. http://doi.org/10.1158/1055-9965.EPI-13-0234-T
Göksungur, Y., Üren, S., & Güvenç, U. (2005). Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource Technology, 96(1), 103-109. http://doi.org/10.1016/j. biortech.2003.04.002
Gupta, V. K., Nayak, A., & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environmental Engineering Research, 20(1), 1-18.
Hammaini, A., González, F., Ballester, A., Blázquez, M. L., & Muñoz, J. A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of Environmental Management, 84(4), 419-426. DOI:https://doi.org/10.1016/j. jenvman.2006.06.015
Haque, M. N., Morrison, G. M., Perrusquia, G., Gutierrez, M., Aguilera, A. F., Cano-Aguilera, I., & Gardea-Torresdey, J. L. (2007). Characteristics of arsenic adsorption to sorghum biomass. Journal of hazardous materials, 145(1-2), 30-35.
Hartwig, A. (2013). Cadmium and cancer. Met Ions Life Sci, 11, 491- 507. DOI:10.1007/978-94-007-5179-8_15
Hernández Mata, K. M., Monge Amaya, O., Certucha Barragán, M. T., Almendariz Tapia, F. J., & Acedo Félix, E. (2013). Metallic biosorption using yeasts in continuous systems. International Journal of Photoenergy, 4. http://dx.doi.org/10.1155/2013/578729
Hlihor, R. M., Bulgariu, L., Sobariu, D. L., Diaconu, M., Tavares, T., & Gavrilescu, M. (2014). Recent advances in biosorption of heavy metals: support tools for biosorption equilibrium, kinetics and mechanism. Revue Roumaine de Chimie, 59(6-7), 527-538.
Holan, Z. N., & Volesky, B. N. (1995). Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents. Applied biochemistry and biotechnology, 53(2), 133-146.
IARC. (2016). Agents classified by the IARC monographs. Volumes 1-115. Lyon, France. Recuperado de http://monographs.iarc.fr/ ENG/Classification/latest_classif.php
INECC. (2009). Metales Pesados. Recuperado de http://www.inecc. gob.mx/sqre-temas/763-aqre-metales
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72. DOI:10.2478/intox-2014-0009
Jianlong, W. (2002). Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry, 37(8), 847-850. http://doi.org/10.1016/S0032-9592(01)00284-9
Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C. J., & Valko, M. (2011). Arsenic: toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31(2), 95-107. DOI:10.1002/jat.1649 45. Kogej, A., & Pavko, A. (2001). Comparison of Rhizopus nigricans in a pelleted growth form with some other types of waste microbial biomass as biosorbents for metal ions. World Journal of Microbiology and Biotechnology, 17(7), 677-685.
Kordialik-Bogacka, E. (2011). Surface properties of yeast cells during heavy metal biosorption. Central European Journal of Chemistry, 9(2), 348-351. http://doi.org/10.2478/s11532-011-0008-8
Kordialik-Bogacka, E. (2014). Saccharomyces pastorianus immobilized on brewer’s spent grain in continuous system for lead ion biosorption. International Biodeterioration and Biodegradation, 96, 191-197. http://doi.org/10.1016/j.ibiod.2014.09.018
Kordialik-Bogacka, E., & Diowksz, A. (2014). Metal uptake capacity of modified Saccharomyces pastorianus biomass from different types of solution. Environmental Science and Pollution Research, 21(3), 2223-2229. http://doi.org/10.1007/s11356-013-2144-5
Kulakovskaya, T., Ryazanova, L., Zvonarev, A., Khokhlova, G., Ostroumov, V., & Vainshtein, M. (2018). The biosorption of cadmium and cobalt and iron ions by yeast Cryptococcus humicola at nitrogen starvation. Folia Microbiologica. 63(4), 507-510. DOI:10.1007/s12223-018-0583-6
Kuroda, K., & Ueda, M. (2010). Engineering of microorganisms towards recovery of rare metal ions. Applied Microbiology and Biotechnology, 87(1), 53-60. http://doi.org/10.1007/s00253- 010-2581-8
Kwok, K. C. M., Koong, L. F., Al Ansari, T., & McKay, G. (2018). Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan. Environmental Science and Pollution Research.25(15), 14734–14742. DOI:10.1007/s11356-018- 1501-9
Lata, S., Singh, P. K., & Samadder, S. R. (2015). Regeneration of adsorbents and recovery of heavy metals: a review. International Journal of Environmental Science and Technology, 12(4), 1461- 1478. DOI:10.1007/s13762-014-0714-9
Levenspiel, O. (1984). Flow in fluidized beds. En Engineering Flow and Heat Exchange. The Plenum Chemical Engineering Series. (pp. 135-147). Boston, MA, USA: Springer. https://doi. org/10.1007/978-1-4615-6907-7_7
Lin, J., & Harichund, C. (2011). Industrial effluent treatments using heavy-metal removing bacterial bioflocculants. Water SA, 37(2), 265-270.
López-Carrillo, L., Hernández-Ramírez, R. U., Gandolfi, A. J., Ornelas- Aguirre, J. M., Torres-Sánchez, L., & Cebrian, M. E. (2014). Arsenic methylation capacity is associated with breast cancer in Northern Mexico. Toxicology and Applied Pharmacology, 280(1), 53-59. http://doi.org/10.1016/j.taap.2014.07.013
Machado, M. D., Janssens, S., Soares, H. M. V. M., & Soares, E. V. (2009). Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. Journal of Applied Microbiology, 106(6), 1792-1804. http://doi. org/10.1111/j.1365-2672.2009.04170.x
Machado, M. D., Soares, E. V., & Soares, H. M. V. M. (2010). Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. Journal of Hazardous Materials, 180(1-3), 347-353. http://doi. org/10.1016/j.jhazmat.2010.04.037
Malgieri, G., Palmieri, M., Esposito, S., Maione, V., Russo, L., Baglivo, I., de Paola, I., Milardi, D., Diana, D., Zaccaro, L., Pedone, P. V., Fattorusso, R., & Isernia, C. (2014). Zinc to cadmium replacement in the prokaryotic zinc-finger domain. Metallomics: Integrated Biometal Science, 6(1), 96-104. http://doi.org/10.1039/ c3mt00208j
Marques, P., Pinheiro, H. M., & Rosa, M. F. (2007). Cd(II) removal from aqueous solution by immobilised waste brewery yeast in fixed-bed and airlift reactors. Desalination, 214, 343-351. http:// doi.org/10.1016/j.desal.2006.11.012
Mata, Y. N., Blázquez, M. L., Ballester, A., González, F., & Muñoz, J. A. (2010). Studies on sorption, desorption, regeneration and reuse of sugar-beet pectin gels for heavy metal removal. Journal of Hazardous Materials, 178(1), 243-248. doi:https:// doi.org/10.1016/j.jhazmat.2010.01.069
Monachese, M. A. (2012). Sequesteration of lead, cadmium and arsenic by Lactobacillus species and detoxication potential. The University of Western Ontario.
Moreno-Rivas, S., Armenta-Corral, R., Frasquillo-Félix, M., Lagarda- Díaz, I., Vázquez-Moreno, L., & Ramos-Clamont Montfort, G. (2016). Biosorción de cadmio en solución acuosa utilizando levadura de panadería (Saccharomyces cerevisiae). Revista Mexicana de Ingeniería Química, 15(3), 843-857.
Muter, O., Lubinya, I., Millers, D., Grigorjeva, L., Ventinya, E., & Rapoport, A. (2002). Cr(VI) sorption by intact and dehydrated Candida utilis cells in the presence of other metals. Process Biochemistry, 38, 123-131.
Nagy, B., Tonk, S., Cerasella, I., Măicăneanu, A., & Majdik, C. (2013). Biosorption of cadmium ions by unmodified, microwave and ultrasound modified brewery and pure strain yeast biomass. American Journal of Analytical Chemistry, 4, 63-71.
Naja, G. M., Murphy, V., Volesky, B. (2010) Biosorption, metals. En M. C. Flickinger. (Ed.), Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. (pp. 1-29). Hoboken, NJ, USA: Wiley. https://doi. org/10.1002/9780470054581.eib166
Niazi, N. K., Murtaza, B., Bibi, I., Shahid, M., White, J. C., Nawaz, M. F., Bashir, S., Shakoor, M. B., Choppala, G., Murtaza, G., & Wang, H. (2016). Removal and recovery of metals by biosorbents and biochars derived from biowastes. En M. N. V. Prasad & K. Shih (Eds.), Environmental Materials and Waste: Resource Recovery and Pollution Prevention. (pp. 149-177). Linn, MO, USA: Elsevier. https://doi.org/10.1016/B978-0-12-803837-6.00007-X
Özer, A., & Özer, D. (2003). Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. Journal of Hazardous Materials, 100(1-3), 219-229. http://doi.org/10.1016/S0304-3894(03)00109-2
Pandey, P. K., Choubey, S., Verma, Y., Pandey, M., & Chandrashekhar, K. (2009). Biosorptive removal of arsenic from drinking water. Bioresource technology, 100(2), 634-637.
Park, D., Yun, Y. S., & Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15(1), 86-102.
Pearson, R. G. (1963). Hard and soft acids bases. Journal of the American Chemical Society, 85(22), 3533-3539.
Pokethitiyook, P., & Poolpak, T. (2016). Biosorption of heavy metal from aqueous solutions. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation (pp. 113- 141). Switzerland: Springer International Publishing. http://doi. org/10.1007/978-3-319-40148-5
Purkayastha, D., Mishra, U., & Biswas, S. (2014). A comprehensive review on Cd(II) removal from aqueous solution. Journal of Water Process Engineering, 2, 105-128. http://doi.org/10.1016/j. jwpe.2014.05.009
Rajendran, P., Muthukrishnan, J., & Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41(9), 935-944.
Rajesh Kumar, S., Jayavignesh, V., Selvakumar, R., Swaminathan, K., & Ponpandian, N. (2016). Facile synthesis of yeast crosslinked Fe3O4 nanoadsorbents for efficient removal of aquatic environment contaminated with As(V). J Colloid Interface Sci, 484, 183-195. DOI:10.1016/j.jcis.2016.08.081
Rao, K., Mohapatra, M., Anand, S., & Venkateswarlu, P. (2010). Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology, 2(7), 81-103. http://doi.org/10.4314/ijest.v2i7.63747
Rao, L. N., & Prabhakar, G. (2011). Removal of heavy metals by biosorption - an overall review. Journal of Engineering Research and Studies, II(IV), 17-22.
Romera, E., Gonzalez, F., Ballester, A., Blazquez, M. L., & Munoz, J. A. (2006). Biosorption with algae: a statistical review. Critical reviews in biotechnology, 26(4), 223-235.
Rosca, M., Hlihor, R. M., Cozma, P., Diana, E., Simion, I. M., & Gavrilescu, M. (2015). Potential of biosorption and bioaccumulation processes for heavy metals removal in bioreactors. The 5th IEEE International Conference on E-Health and Bioengineering - EHB 2015 (pp. 1-4). IEEE.
Roy, D., Gaur, P., Verma, N., Pathireddy, M., & Singh, K. P. (2013). Bioremediation of arsenic (III) from water using baker yeast Saccharomyces cerevisiae. International Journal of Environmental Bioremediation & Biodegradation, 1(1), 14-19. http://doi. org/10.12691/ijebb-1-1-3
Safarik, I., Maderova, Z., Pospiskova, K., Baldikova, E., Horska, K., & Safarikova, M. (2015). Magnetically responsive yeast cells: methods of preparation and applications. Yeast, 32(1), 227-237.
Salehizadeh, H., & Shojaosadati, S. A. (2003). Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research, 37(17), 4231-4235.
Say, R., Yılmaz, N., & Denizli, A. (2003). Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Separation Science and Technology, 38(9), 2039-2053.
Schwerdtle, T., Ebert, F., Thuy, C., Richter, C., Mullenders, L. H. F., & Hartwig, A. (2010). Genotoxicity of Soluble and Particulate Cadmium Compounds: Impact on Oxidative DNA Damage and Nucleotide Excision Repair. Chemical Research in Toxicology, 23(2), 432-442. DOI:10.1021/tx900444w
Selvakumar, R., Jothi, N. A., Jayavignesh, V., Karthikaiselvi, K., Antony, G. I., Sharmila, P. R., Kavitha, S., & Swaminathan, K. (2011). As(V) removal using carbonized yeast cells containing silver nanoparticles. Water Research, 45(2), 583-592. http://doi. org/10.1016/j.watres.2010.09.034
Shankar, S., Shanker, U., & Shikha. (2014). Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. The Scientific World Journal, 2014, 1-18. http://doi.org/10.1155/2014/304524
Shen, S., Li, X. F., Cullen, W. R., Weinfeld, M., & Le, X. C. (2013). Arsenic binding to proteins. Chemical Reviews, 113(10), 7769- 7792. http://doi.org/10.1021/cr300015c
Singh, S., Lee, W., DaSilva, N. A., Mulchandani, A., & Chen, W. (2008). Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase. Biotechnology and Bioengineering, 99(2), 333-340.
Soares, E. V., & Soares, H. M. V. M. (2012). Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: A review. Environmental Science and Pollution Research, 19(4), 1066-1083. http://doi.org/10.1007/s11356-011-0671-5
Spence, C. L., & Bailon, P. (2000). Fluidized-Bed Receptor-Affinity Chromatography. En P. Bailon, G. K. Ehrlich, W. J. Fung, W. Berthold (Eds.), Affinity Chromatography. Methods in Molecular Biology, Vol. 147 (pp. 25-39). Totowa, NJ, USA: Humana Press. https://doi.org/10.1007/978-1-60327-261-2_3
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. EXS, 101, 133-164. doi:10.1007/978-3-7643-8340-4_6
USEPA. (2016). Table of Regulated Drinking Water Contaminants. Recuperado de https://www.epa.gov/your-drinking-water/tableregulated- drinking-water-contaminants
Vasudevan, P., Padmavathy, V., & Dhingra, S. C. (2002). Biosorption of monovalent and divalent ions on baker’s yeast. Bioresource Technology, 82(3), 285-289. http://doi.org/10.1016/S0960- 8524(01)00181-X
Vasudevan, P., Padmavathy, V., & Dhingra, S. C. (2003). Kinetics of biosorption of cadmium on baker’s yeast. Bioresource Technology, 89(3), 281-287. http://doi.org/10.1016/S0960-8524(03)00067-1
Veglio, F., & Beolchini, F. (1997). Removal of metals by biosorption : a review. Hydrometallurgy, 44, 301-316.
Vijayaraghavan, K., & Balasubramanian, R. (2015). Is biosorption suitable for decontamination of metal-bearing wastewaters ? a critical review on the state-of-the-art of biosorption processes and future directions. Journal of Environmental Management, 160, 283-296. http://doi.org/10.1016/j.jenvman.2015.06.030
Vinopal, S., Ruml, T., & Kotrba, P. (2007). Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. International Biodeterioration and Biodegradation, 60(2), 96- 102. http://doi.org/10.1016/j.ibiod.2006.12.007
Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 24(5), 427-451. http://doi.org/10.1016/j.biotechadv.2006.03.001
Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195-226. http:// doi.org/10.1016/j.biotechadv.2008.11.002
Wang, S., & Zhao, X. (2009). On the potential of biological treatment for arsenic contaminated soils and groundwater. Journal of environmental Management, 90(8), 2367-2376.
WHO. (2011). Cadmium in drinking water. Background Document for Preparation of WHO Guidelines for Drinking-water Quality. Geneva, Switzerland. Recuperado de http://www.who.int/ water_sanitation_health/dwq/chemicals/cadmium.pdf
WHO. (2006). Guidelines for drinking-water quality. Recommendations (Vol. 1). Geneva, Switzerland. Recuperado de http://www.who. int/water_sanitation_health/dwq/gdwqvol32ed.pdf
Wu, Y., Wen, Y., Zhou, J., Dai, Q., & Wu, Y. (2012). The characteristics of waste Saccharomyces cerevisiae biosorption of arsenic (III). Environmental Science and Pollution Research, 19(8), 3371-3379.
Wykoff, D. D., & Shea, E. K. O. (2001). Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics, 159(4), 1491-1499.
Wysocki, R., Chéry, C. C., Wawrzycka, D., Van Hulle, M., Cornelis, R., Thevelein, J. M., & Tamás, M. J. (2001). The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Molecular Microbiology, 40(6), 1391-1401.
Yadanaparthi, S. K. R., Graybill, D., & von Wandruszka, R. (2009). Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. Journal of Hazardous Materials, 171(1-3), 1-15. https://doi.org/10.1016/j.jhazmat.2009.05.103
Yin, Y., Wang, J., Yang, X., & Li, W. (2016). Removal of strontium ions by immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres. Nuclear Engineering and Technology. 49(1), 172- 177. http://doi.org/10.1016/j.net.2016.09.002
Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N.R., McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 181, 817-831. https://doi.org/10.1016/j. jenvman.2016.06.059
Zhang, Y., Liu, W., Zhang, L., Wang, M., & Zhao, M. (2011). Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution. Applied Surface Science, 257(23), 9809-9816. http://doi.org/10.1016/j. apsusc.2011.06.026
Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, X., Tzannetaki, E. L., & Liakopoulou-Kyriakides, M. (2007). Comparative study of Cd (II) and Cr (VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresource technology, 98(15), 2859-2865.
Zoghi, A., Khosravi-Darani, K., & Sohrabvandi, S. (2014). Surface binding of toxins and heavy metals by probiotics. Mini-Reviews in Medicinal Chemistry, 14(1), 84-98. http://doi.org/10.2174/13 89557513666131211105554