2005, Number 4
<< Back Next >>
Otorrinolaringología 2005; 50 (4)
Technical and physiological bases of transient otoacoustic emissions
Uribe ER, Durand RJA
Language: Spanish
References: 64
Page: 103-111
PDF size: 147.45 Kb.
ABSTRACT
This article reviews the knowledge about the anatomy and physiology of the Corti’s organ, applying them to the generation of the otoacoustic emissions. Furthermore, it revises the current data about their use, as well as some theories about apoptosis and dead regions in the cochlea. The purpose is to give diagnostic aid to the patients with some auditory illnes, with the appropriate interpretation of the otoacoustic emissions.
REFERENCES
Rajan R. Cochlear outer-hair-cell efferents and complex-sound-induced hearing loss: protective and opposing effects. J Neurophysiol 2001;86(6):3073-6.
Slepecky NB. Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR, editors. The cochlea. 1996;pp:44-129.
Wada H, Usukura H, Sugawara M, et al. Relationship between the local stillness of the outer hair cell along the cell axis and its ultrastructure observed by atomic force microscopy. Hear Res 2003;177:61-70.
Arima T, Kuraoka A, Toriya R, Shibata Y, Uemura T. Quick-freeze, deep-etch visualization of the ‘cytoskeletal spring’ of cochlear outer hair cells. Cell Tissue Res 1991;263:91-97.
Holley MC, Kalinec F, Kachar B. Structure of the cortical cytoskeleton in mammalian outer hair cells. J Cell Sci 1992;102:569-80.
Ulfendahl M, Scarfone E, Flock A, Calvez S, Conradi P. Perilymphatic fluid compartments and intercellular spaces of the inner ear and the organ of Corti. Neuroimage 2000;12:307-13.
Ashmore J. Biophysics of the cochlea – biomechanics and ion channelopathies. Br Med Bull 2002;63:59-72.
Oliver D, Klocker N, Schuck J, Baukrowitz T, Ruppersberg JP, Fakler B. Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 2000;26:595-601.
Art JJ, Fettiplace R. Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol 1987;385:207-42.
Fernández-Chacón R, Sudhof TC. Genetics of synaptic vesicle function: toward the complete functional anatomy of an organelle. Annu Rev Physiol 1999;61:753-76.
Eybalin M, Renard N, Aure F, Safieddine S. Cysteinestring protein in inner hair cells of the organ of Corti: synaptic expression and upregulation at the onset of hearing. Eur J Neurosci 2002;15:1409-20.
Lin X, Webster P, Li Q, Chen S, Ouyang Y. Optical recordings of Ca2+ signaling activities from identified inner ear cells in cochlear slices and hemicochleae. Brain Res Brain Res Protoc 2003;11:92-100.
Xintian Hu, Evans BN, Dallos P. Direct visualization of organ of Corti kinematics in a hemicochlea. J Neurophysiol 1999;82(5):2798-807.
Hawkins JE, Schacht J. The electrolytes of the labyrinthine fluids. Laryngoscope 1997;107(3):293-7.
Santos-Sacchi J, Huang G. Temperature dependence of outer hair cell nonlinear capacitance. Hear Res 1998;16:99-106.
Rebillard G, Ruel J, Nouvian R, Saleh H, Pujol R, Dehnes Y, et al. Glutamate transporters in the guinea-pig cochlea: partial mRNA sequences, cellular expression and functional implications. Eur J Neurosci 2003;17:83-92.
Puel JL. Chemical synaptic transmission in the cochlea. Prog Neurobiol 1995;47:449-76.
Ruel J, Chen C, Pujol R, Bobbin RP, Puel JL. AMPApreferring glutamate receptors in cochlear physiology of adult guinea-pig. J Physiol 1999;518:667-80.
Martin P, Hudspeth AJ. Active hair-bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli. Proc Natl Acad Sci USA 1999;96:14306-11.
Ricci AJ, Crawford AC, Fettiplace R. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci 2000;20:7131-42.
Selyanko AA, Hadley JK, Brown DA. Properties of single M-type KCNQ2/KCNQ3 potassium channels expressed in mammalian cells. J Physiol 2001;534:15-24.
Abdala C, Sininger YS, Starr A. Distortion product otoacoustic emission suppression in subjects with auditory neuropathy. Ear Hear 2000;21:542-53.
Wilson JL, Henson MM, Henson OW. Course and distribution of efferent fibers in the cochlea of the mouse. Hear Res 1991;55:98-108.
Maison S, Micheyl C, Collet L. Medial olivocochlear efferent system in humans studied with amplitudemodulated tones. J Neurophysiol 1997;77(4):1759-68.
Zimatore G, Hatzopoulos S, Giuliani A. Comparison of transient otoacoustic emission responses from neonatal and adult. J Appl Physiol 2002;92:2521-8.
Morlet T, Goforth L, Hood LJ, Ferber C, Duclaux R, Berlin CI. Development of human cochlear active mechanism asymmetry: involvement of the medial olivocochlear system? Hear Res 1999;137:179-89.
Rubel EW, Ryals BM. Development of the place principle: acoustic trauma. Science 1983;219:412-514.
Harrison WA, Norton SJ. Characteristics of transient evoked otoacoustic emissions in normal hearing and hearing impaired children. Ear Hear 1999;20(1):75-86.
Hawkins JE, Schacht J. The electrolytes of the labyrinthine fluids. Laryngoscope 1997;107(3):293-7.
Plinkert PK, Hemmert W, Wagner W, Zenner K. Monitoring noise susceptibility: sensitivity of otoacoustic emissions and subjective audiometry. Br J Audiology 1999;33:367-82.
Eggermont JJ, Frown DK, Ponton CW, et al. Comparison of distortion product otoacoustic emission (DPOAE) and auditory brain stem response (ABR) traveling wave delay measurements suggests frequency-specific synapse maturation. Ear Hear 1996;17(5):386-94.
Summers V, Molis MR, Musch H, Walden BE, Surr RK, Cord MT. Identifying dead regions in the cochlea: psychophysical tuning curves and tone detection in threshold-equalizing noise. Ear Hear 2003;24(2):133-42.
Moore BCJ. Psychoacoustics of normal and impaired hearing. Br Med Bull 2002;63:121-34.
Grimault N, Micheyl C, Carlyon RP, Arthaud P, Collet L. Perceptual auditory stream segregation of sequences of complex sounds in subjects with normal and impaired hearing. Br J Audiol 2001;35:173-82.
Moore BCJ. Dead regions in the cochlea: diagnosis, perceptual consequences, and implications for the fitting of hearing aids. Trends Amplif 2001;5(1):1-34.
Braverman I, Jaber L, Levi H, Adelman C, Arons KS, Fischel-Ghodsian N, et al. Audiovestibular findings in patients with deafness caused by a mitochondrial susceptibility mutation and precipitated by an inherited nuclear mutation or aminoglycosides. Arch Otolaryngol Head Neck Surg 1996;122:1001-4.
Sockalingam R, Freeman S, Cherny L, Sohmer H. Effect of high-dose cisplatin on auditory brainstem responses and otoacoustic emissions in laboratory animals. Am J Otol 2000;21(4):521-7.
Malgrange B, Rigo JM, Coucke P, Thiry M, Hans G, Nguyen L, et al. Identification of factors that maintain mammalian outer hair cells in adult organ of Corti explants. Hear Res 2002;170:48-58.
Hu BH, Henderson D, Nicotera TM. F-actin cleavage in apoptotic outer hair cells in chinchilla cochleas exposed to intense noise. Hear Res 2002;172:1-9.
Moore BCJ, Alcántara JI. The use of psychophysical tuning curves to explore dead regions in the cochlea. Ear Hear 2001;22(4):268-78.
Cacace AT, Pinheiro JMB. Relationships between otoacoustic emissions and auditory brainstem responses in neonates and young children: a correlation and factor analytical study. Laryngoscope 2002;112:156-67.
Robinette MS. Clinical applications of otoacoustic emissions: infants, children and adults. Congress of the Mexican Society of Otolaryngology and HNS, 2000.
Sininger SY, Nguyen T, Michalewski HJ, Abdala C. Cochlear receptor (microphonic and summating potentials, otoacoustic emissions) and auditory pathway (auditory brain stem potentials). Activity in auditory neuropathy. Ear Hear 2001;22:91-99.
Care MA, Lutman ME. Transiently evoked otoacoustic emissions in patients with cerebellopontine angle tumors. Am J Otol 1994;15(2):206-16.
Ho V, Daly KA, Hunter LL, Davey C. Otoacoustic emissions and tympanometry screening among 0-5 year olds. Laryngoscope 2002;112:513-9.
Telischi F. An objective method of analyzing cochlear versus non-cochlear patterns of distortion-product otoacoustic emissions in patients with acoustic neuromas. Laryngoscope 2000;110:553-62.
Van Zanten GA, Collet L, Van Haver K. Otoacoustic emissions. Int J Pediatr Otorhinolaryngol 1995;32:S213-S6.
Zimatore G, Giuliani A, Parlapiano C, Grisanti G, Colosimo A. Revealing deterministic structures in click-evoked otoacoustic emissions. J Appl Physiol 2000;88:1431-7.
Lutman ME. Reliable identification of click-evoked otoacoustic emissions using signal processing technique. Br J Audiol 1993;27:103-8.
Kemp DT. Otoacoustic emissions, their origin in cochlear function, and use. Br Med Bull 2002;63:223-41.
Mobley SR, Odabasi O, Ahsan S, Martin G, Stagner B, Telischi FFM. Distortion-product otoacoustic emissions in nonacoustic tumors of the cerebellopontine angle. Arch Otolaryngol Head Neck Surg 2002;126(2):115-20.
Morant V, Algarra M, Sequi C, Caballero M, Mir Planas B. Modificaciones de las otoemisiones acústicas provocadas: estudio de grupos de edad. Acta Otorrinolaringol Esp 1999;50(5):355-8.
Zimatore G, Hatzopoulos S, Giuliani A. Comparison of transient otoacoustic emission responses from neonatal and adult. J.Appl Physiol 2002;92:2521-8.
Fetterman BL. Distortion-product otoacoustic emissions and cochlear microphonics: relationships in patients with and without endolymphatic hydrops. Laryngoscope 2001;111:946-54.
Harrison WA, Norton SJ. Characteristics of transient evoked otoacoustic emissions in normal hearing and hearing impaired children. Ear Hear 1999;20(1):75-86.
Kimberley BP. Applications of distortion-product emissions to an otological practice. Laryngoscope 1999;109(12):1908-18.
Hirsch BE, Durrant JD, Yetiser S. Localizing retrocochlear hearing loss. Am J Otol 1996;17(4):537-46.
Rance G, Cone-Wesson B, Wunderlich J. Speech perception and cortical event related potentials in children with auditory neuropathy. Ear Hear 2002;23:239-53.
Norton SJ, Gorga MIP, Widen JE, Folsom RC, Sininger Y, Cone-Wesson B. Identification of neonatal hearing impairment: evaluation of transient evoked otoacoustic emission, distortion product otoacoustic emission, and auditory brain stem response test performance. Ear Hear 2000;21:508-28.
Toral Martiñon R, Collado Corona MA, Shkurovich Zaslavsky M. Diagnóstico temprano de sordera por emisiones otoacústicas en el recién nacido. Anales Médicos del Hospital ABC 1997;42(3):111-3.
Nozza RJ, Sabo DL, Mandel EM. A role for otoacoustic emissions in screening for hearing impairement and middle ear disorders in school age children. Ear Hear 1997;18(3):227-39.
Tlumak AI, Kileny PR. Parameters that affect the measurement of otoacoustic emissions. Otolaryngol Head Neck Surg 2001;9:279-83.
Yperman M, Daemers K, Van Driessche K, Somers T, Offeciers FE, Govaerts PJ. Contralateral suppression of transient evoked otoacoustic emissions: normative data for a clinical test set-up. Otol Neurotol 2001;22(3):350-1.
Lafreniere D, Smurzynski J, Jung M, Leonard G, Kim DO. Otoacoustic emissions in full-term newborns at risk for hearing loss. Laryngoscope 1993;1031334-41.