2017, Number 1
<< Back Next >>
Ann Hepatol 2017; 16 (1)
The Role of the Gut Microbiota in Bile Acid Metabolism
Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-Sánchez N
Language: English
References: 54
Page: 21-26
PDF size: 6719.02 Kb.
Text Extraction
The gut microbiota has been considered a cornerstone of maintaining the health status of its human host because it not only
facilitates harvesting of nutrients and energy from ingested food, but also produces numerous metabolites that can regulate host
metabolism. One such class of metabolites, the bile acids, are synthesized from cholesterol in the liver and further metabolized
by the gut microbiota into secondary bile acids. These bioconversions modulate the signaling properties of bile acids through the
nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate diverse metabolic pathways in the
host. In addition, bile acids can regulate gut microbial composition both directly and indirectly by activation of innate immune
response genes in the small intestine. Therefore, host metabolism can be affected by both microbial modifications of bile acids,
which leads to altered signaling via bile acid receptors, and by alterations in the composition of the microbiota. In this review, we mainly
describe the interactions between bile acids and intestinal microbiota and their roles in regulating host metabolism, but we also examine
the impact of bile acid composition in the gut on the intestinal microbiome and on host physiology.
REFERENCES
Qin J, Li R, Raes JA, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, et al.A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 7285: 59-65.
Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev 2010; 3: 859-904.
Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 4: 837-48.
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 7402: 207-14.
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014; 3: 332-8.
Jandhyala SM, Talukdar R,Subramanyam C,Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015; 29: 8787-803.
Rogier EW, Frantz AL, Bruno ME, Wedlund L, Cohen DA, Stromberg AJ, Kaetzel CS. Lessons from mother: long-term impact of antibodies in breast milk on the gut microbiota and intestinal immune system of breastfed offspring. Gut Microbes 2014; 5: 663-8.
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 5: 313-23.
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez- Bello MG, Contreras M, Magris M, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486: 222-7.
Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and non-alcoholic fatty liver disease. Gastroenterology 2017; 7: 1679-94.
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489: 220-30.
Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li HL, DLieber A, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 2016; 343: 343-82.
Yassour M, Vatanen T, Siljander H, Hamalainen AM, Harkonen T, Ryhanen SJ, Franzosa EA, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 2016; 343: 343-81.
Macpherson AJ, de Aguero MG, Ganal-Vonarburg SC. How nutrition and the maternal microbiota shape the neonatal immune system. Nat Rev Immunol 2017; 8: 508-17.
Planer JD, Peng Y, Kau AL, Blanton LV, Ndao IM, Tarr PI, Wagner BB, et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 2016; 7606: 263-6.
Shiffka SJ, Kane MA, Swaan PW. Plan ar bile acids in health and disease. Biochim Biophys Acta 2017; 11: 2269-76.
Begley M, Sleator RD, Gahan CG, Hill C. C111ontribution of three bile-associated loci, bsh, pva and btlB, to gastrointestinal persistence and bile tolerance of listeria monocytogenes. Infect Immun 2005; 2: 894-904.
Cariou B, Harmelen KV, Duran-Sandoval D. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 2006; 281: 11039-49.
Abdelkarim M, Caron S, Duhem C. The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/beta-catenin pathways. J Biol Chem 2010; 285: 36759-67.
Long SL, Gahan CGM, Joyce SA. Interactions between gut bacteria and bile in health and disease. Mol Aspects Med 2017; 56: 54-65.
Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003; 72: 137-74.
Arrese M, Trauner M, Sacchiero RJ, Crossman MW, Shneider BL. Neither intestinal sequestration of bile acids nor common bile duct ligation modulate the expression and function of the rat ileal bile acid transporter. Hepatology 1998; 28: 1081-7.
Axelson M, Aly A, Sjövall J. Levels of 7 alpha-hydroxy-4- cholesten-3-one in plasma reflect rates of bile acid synthesis in man. FEBS Lett 1988; 239: 324-8.
Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 83: 633-71.
Duez H, van der Veen JN, Duhem C, Pourcet B, Touvier T, Fontaine C, Derudas B, et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha. Gastroenterology 2008; 2: 689-98.
Hofmann AF. Biliary secretion and excretion in health and disease: Current concepts. Ann Hepatol 2007; 1: 15-27.
Wagner M, Trauner M. Transcriptional regulation of hepatobiliary transport systems in health: implications for a rational approach to the treatment of intrahepatic cholestasis. Ann Hepatol 2005; 2: 77-9.
Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol 2002; 64: 635-61.
Ananthanarayanan M, von Dippe P, and Levy D. Identification of the hepatocyte Na+-dependent bile acid transport protein using monoclonal antibodies. J Biol Chem 1988; 17: 8338-43.
Fretland AJ, Omiecinski CJ. Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact 2000; 129: 41-59.
31 Zhu QS, Xing W, Qian B, Von Dippe P, Shneider BL, Fox VL, Levy D. Inhibition of human m-epoxide hydrolase gene expression in a case of hypercholanemia. Biochim Biophys Acta 2003; 1638: 208-16.
Trauner M and Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 2: 633-67.
Wagner M, Zollner GM. Nuclear receptors as new perspective for the management of liver diseases. Gastroenterology 2011; 4: 1120-34.
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014; 30: 332-8.
Kurdi P, Kawanishi K, Mizutani K, Yokota A. Mechanism of growth inhibition by free bile acids in lactobacilli and bifido bacteria. J Bacteriol 2006; 188: 1979-86.
Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol 2017; 10: 747-56.
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505: 559-63.
Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett 2014; 588: 4223-33.
Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. Mbio 2016; 4: e01018-16.
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 2005; 31: 11070-5.
Rhee SH, Pothoulakis C, Mayer EA, Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009; 5: 306-14.
Cani P, Knauf C. How gut microbes talk to organs: the role of endocrine and nervous routes. Mol Metab 2016; 9: 743-52.
Fetissov SO. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol 2016; 13: 11-25.
Cani PD, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 2013; 6: 935-40.
Zhang LS, Davies SS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med 2016; 8: 46.
Nohr MK, Pedersen MH, GilleA, Egerod KL, Engelstoft MS, Husted AS, Sichlau RM, et al. GPR41/FFAR3 and GPR43/ FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 2013; 154: 3552-64.
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014; 30: 332-8.
De Silva A, Bloom S. Gut hormones and appetite control: a focus on PYY and GLP1 as therapeutic targets in obesity. Gut Liver 2012; 1: 10-20.
Chavez-Tapia NC, Tellez-AvilaFI, Barrientos-Gutierrez T, Mendez-Sanchez N, Lizardi-Cervera J, Uribe M. Bariatric surgery for non-alcoholic steatohepatitis in obese patients. Cochrane Database Syst Rev 2010; 3: 1-30.
Aguilar-Olivos NE, Almeda-Valdes P, Aguilar-Salinas CA, Uribe M, Méndez-Sánchez N. The role of bariatric surgery in the management of nonalcoholic fatty liver disease and metabolic syndrome. Metabolism 2016; 8: 1196-207.
Zhang H, Di Baise JK, Zuccolo A. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 2009; 106: 2365-70.
Aron-Wisnewsky J, Clement K. The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity. Curr Atheroscler Rep 2014; 16: 454.
Joăo Cabrera E, Valezi AC, Delfino VD, Lavado EL, Barbosa DS. Reduction in plasma levels of inflammatory and oxidative stress indicators after Roux-en-Y gastric bypass. Obes Surg 2010; 1: 42-9.
Poitou C, Perret C, Mathieu F, Truong V, Blum Y, Durand H, Alili R, et al. Bariatric surgery induces disruption in inflammatory signaling pathways mediated by immune cells in adipose tissue: a RNA-Seq study. PLoS One 2015; 5: e0125718.