2017, Número 1
<< Anterior Siguiente >>
Ann Hepatol 2017; 16 (1)
The Role of Bile Acids in Glucose Metabolism and Their Relation with Diabetes
González-Regueiro JA, Moreno-Castańeda L, Uribe M, Chávez-Tapia NC
Idioma: Ingles.
Referencias bibliográficas: 49
Paginas: 15-20
Archivo PDF: 1651.65 Kb.
RESUMEN
Sin resumen.
REFERENCIAS (EN ESTE ARTÍCULO)
Chiang JY. Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev 2002; 23: 443-63.
Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J 2006; 25: 1419-25.
Urizar NL, Dowhan DH, Moore DD. The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. J Biol Chem 2000; 275: 39313-7.
Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, et. al. Identification of membranetype receptor for bile acids (M-BAR). Biochem Biophys Res Commun 2002; 298: 714-9.
Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 2014; 66: 948-83.
Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 2009; 89: 147-91.
Hofmann AF. Chemistry and enterohepatic circulation of bile acids. Hepatology 1984; 4: 4S-14S.
Russell DW. Fifty years of advances in bile acid synthesis and metabolism. J Lipid Res 2009; 50: S120-S125.
Insull W Jr. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J 2006; 99: 257-73.
Makishima M, Okamoto AY, Repa JJ, Tu H Learned RM, Luk A, Hull MV, Lustig KD, et al. Identification of a nuclear receptor for bile acids. Science 1999; 284: 1362-5.
Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, et. al. A G protein-coupled receptor responsive to bile acids. J Biol Chem 2003; 278: 9435-40.
Chiang JY. Bile acids: regulation of synthesis. J Lipid Res 2009; 50: 1955-66.
Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 repress bile acid biosynthesis. Mol Cell 2000; 6: 517-26.
Brendel C, Schoonjans K, Botrugno OA, Treuter E, Auwerx J. The small heterodimer partner interacts with the liver X receptor alpha and represses its transcriptional activity. Mol Endocrinol 2002; 16: 2065-76.
Holt JA, Luo G, Billin AN, Bisi J, MCNeill YY, Kozarsky KF, Donahee M, et. al. Definition of a novel growth factor dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 2003; 17: 1581-91.
Song KH, Li T, Owsley E, Strom S, Chiang JY. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 2009; 49: 297-305.
Muruyama T, Tanaka K, Suzuki J, Miyoshi H, Harada N, Nakamura T, Miyamoto Y, et al. Targeted disruption of G protein- coupled bile acid receptor 1 (Gbpar1/M-Bar) in mice. J Endocrinol 2006; 191: 197-205.
Vassileva G, Golovko A, Markowitz L, Abbondanzo SJ, Zeng M, Yang S, Hoos L, et al. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem J 2006; 298: 423-30.
Duran-Sandoval D, Mautino G, Martin G, Percevault F, Barbier O, Fruchart JC, Kuipers F, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 2004; 53: 890-8.
Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 2006; 103: 1006-11.
Watanabe M, Horai Y, Houten SM, Morimoto K, Sugizaki T, Arita E, Mataki C, et. al. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J Biol Chem 2011; 286: 26913-20.
Li T, Francl JM, Boehme S, Ochoa A, Zhang Y, Klaassen CD, Erickson SK, et. al. Glucose and insulin induction of bile acid synthesis: mechanisms and implication in diabetes and obesity. J Biol Chem 2012; 287: 1861-73.
Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J, Fukamizu A. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem 2004; 279: 23158-65.
Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 2006; 116: 1102-9.
Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, Abdelkarim M, Caron S, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 2006; 281: 11039-49.
Lundasen T, Gälman C, Angelin B, Rudling M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 2006; 260: 530-6.
Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE, Satapati S, Suino-Powell K, et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab 2011; 13: 729-38.
Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino- Powell K, Xu HE, et. al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 2011; 331: 1621-4.
Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 2002; 143: 1741-7.
Renga B, Mencarelli A, Vavassori P, Brancaleone V, Fiorucci S. The bile acid sensor FXR regulates insulin transcription and secretion. Biochim Biophys Acta 2010; 1802: 363-72.
Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon- like peptide 1 secretion through TGR5 in a murine en teroendocrine cell line STC-1. Biochem Biophys Res Commun 2005; 329: 386-90.
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87: 1409-39.
Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: whats is up, what is down? Diabetologia 2011; 54: 10-8.
Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10: 167-77.
Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, et al. Association of glycemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000; 321: 405-12.
Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med 1977; 296: 1365- 71.
Abrams JJ, Ginsberg H, Grudy SM. Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus. Diabetes 1982; 31: 903-10.
Zieve FJ, Kalin MF, Schwartz SL, Jones MR, Bailey WL. Results of the glucose-lowering effect of WelChol study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther 2007; 29: 74-83.
Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT, Gabrielsen J, Strodel WE, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en- Y gastric bypass. Diabetes Care 2013; 36: 1859-64.
Rosenbaum DP, Petersen JS, Ducharme S, Markham O, Goldberg DI. Absorption, distribution and excretion of GT31- 104, a novel bile acid sequestrant, in rats and dogs after acute and subchronic administration. J Pharm Sci 1997; 86: 591-5.
Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A shortterm, double-blind, crossover trial. Ann Intern Med 1994; 121: 416-22.
Bays HE, Goldberg RB, Truitt KE, Jones MR. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Arch Intern Med 2008; 168: 1975-83.
Fonseca VA, Rosenstock J, Wang AC, Truitt KE, Jones MR. Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care 2008; 31: 1479-84.
Goldberg RB, Fonseca VA, Truitt KE, Jones MR. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulinbased therapy. Arch Intern Med 2008; 168: 1531-40.
Brafau G, Stellard F, Prado K, Bioks VW, Jonkers E, Boverhof R, Kuipers F, et al. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatoloy 2010; 52: 1455-64.
Ashrafian H, Bueter M, Ahmed K, Suliman A, Bloom SR, Darzi A, Athanasiou T. Metabolic surgery: an evolution through bariatric animal models. Obes Rev 2010; 11: 907-20.
Rubino F, Gagner M, Gentileschi P, Kini S, Fukuyama S, Feng J, Diamond E. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg 2004; 240: 236-42.
Kohli R, Bradley D, Setchell KD, Eagon JC, Abumrad N, Klein S. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab 2013; 98: E708-E712.
Sonne DP, Hansen M, Knop FK. Bile acid sequestrants in type 2 diabetes: potential effects of GLP-1 secretion. Eur J Endocrinol 2014; 171: R47-R65.