2017, Número 1
<< Anterior Siguiente >>
Ann Hepatol 2017; 16 (1)
Cholesterol and Lipoprotein Metabolism and Atherosclerosis: Recent Advances in Reverse Cholesterol Transport
Wang HH, Garruti G, Liu M, Portincasa P, Wang DQH
Idioma: Ingles.
Referencias bibliográficas: 129
Paginas: 27-42
Archivo PDF: 855.47 Kb.
RESUMEN
Sin resumen.
REFERENCIAS (EN ESTE ARTÍCULO)
Lusis AJ. Atherosclerosis. Nature 2000; 407: 233-41.
Emerging Risk Factors C, Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009; 302: 1993-2000.
Cholesterol Treatment Trialists C, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010; 376: 1670-81.
Grundy SM, Cleeman JI, Merz CN, Brewer HBJr, Clark LT, Hunninghake DB, Pasternak RC, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. J Am Coll Cardiol 2004; 44: 720-32.
Smith SCJr, Allen J, Blair SN, Bonow RO, Brass LM, Fonarow GC, Grundy SM, et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. Circulation 2006; 113: 2363-72.
Grundy SM, Cleeman JI, Merz CN, Brewer HBJr, Clark LT, Hunninghake DB, Pasternak RC, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004; 110: 227-39.
Barter PJ, Brewer HBJr, Chapman MJ, Hennekens CH, Rader DJ, Tall AR. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23: 160-7.
Wang DQ. Regulation of intestinal cholesterol absorption. Annu Rev Physiol 2007; 69: 221-48.
Panel TNCEPE. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486-97.
Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, Foster E, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/ American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2010; 56: e50-103.
Martin SS, Metkus TS, Horne A, Blaha MJ, Hasan R, Campbell CY, Yousuf O, et al. Waiting for the National Cholesterol Education Program Adult Treatment Panel IV Guidelines, and in the meantime, some challenges and recommendations. Am J Cardiol 2012; 110: 307-13.
Kannel WB, Dawber TR, Friedman GD, Glennon WE, McNamara PM. Risk Factors in Coronary Heart Disease. An Evaluation of Several Serum Lipids as Predictors of Coronary Heart Disease; the Framingham Study. Ann Intern Med 1964; 61: 888-99.
Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest 1990; 85: 1234-41.
Andersen JM, Dietschy JM. Regulation of sterol synthesis in 16 tissues of rat. I. Effect of diurnal light cycling, fasting, stress, manipulation of enterohepatic circulation, and administration of chylomicrons and triton. J Biol Chem 1977; 252: 3646-51.
Andersen JM, Dietschy JM. Regulation of sterol synthesis in 15 tissues of rat. II. Role of rat and human high and low density plasma lipoproteins and of rat chylomicron remnants. J Biol Chem 1977; 252: 3652-9.
Dietschy JM. Regulation of cholesterol metabolism in man and in other species. Klin Wochenschr 1984; 62: 338-45.
Spady DK, Dietschy JM. Rates of cholesterol synthesis and low-density lipoprotein uptake in the adrenal glands of the rat, hamster and rabbit in vivo. Biochim Biophys Acta 1985; 836: 167-75.
Turley SD, Dietschy JM. The metabolism and excretion of cholesterol by the liver. In: Arias IM, Jakoby WB, Popper HDSASD (eds.). The Liver: Biology and Pathobiology. 2nd Ed. New York: Raven Press; 1988, p. 617-41.
Cohen DE. Lipoprotein Metabolism and Cholesterol Balance. In: Arias IM, Alter HJ, Boyer JL, Cohen DE, Fausto N, Shafritz DA, Wolkoff AW (eds.). The Liver: Biology and Pathobiology. 5th Ed. West Sussex: Wiley-Blackwell; 2009, p. 271-85.
Dietschy JM, Turley SD. Control of cholesterol turnover in the mouse. J Biol Chem 2002; 277: 3801-4.
Spady DK, Turley SD, Dietschy JM. Rates of low density lipoprotein uptake and cholesterol synthesis are regulated independently in the liver. J Lipid Res 1985; 26: 465-72.
Spady DK, Turley SD, Dietschy JM. Receptor-independent low density lipoprotein transport in the rat in vivo. Quantitation, characterization, and metabolic consequences. J Clin Invest 1985; 76: 1113-22.
Turley SD, Dietschy JM. Sterol absorption by the small intestine. Curr Opin Lipidol 2003; 14: 233-40.
Wang DQ, Cohen DE. Absorption and Excretion of Cholesterol and Other Sterols. In: Ballantyne CM (ed.). Lipidology in the Treatment and Prevention of Cardiovascular Disease (Clinical Lipidology: A Companion to Braunwald's Heart Disease). 1st Ed. Philadelphia: Elsevier Saunders; 2008, p. 26- 44.
Tso P, Fujimoto K. The absorption and transport of lipids by the small intestine. Brain Res Bull 1991; 27: 477-82.
Wang DQ, Lee SP. Physical chemistry of intestinal absorption of biliary cholesterol in mice. Hepatology 2008; 48: 177- 85.
Wang DQ, Paigen B, Carey MC. Genetic factors at the enterocyte level account for variations in intestinal cholesterol absorption efficiency among inbred strains of mice. J Lipid Res 2001; 42: 1820-30.
Bhattacharyya AK, Eggen DA. Relationships between dietary cholesterol, cholesterol absorption, cholesterol synthesis, and plasma cholesterol in rhesus monkeys. Atherosclerosis 1987; 67: 33-9.
Trautwein EA, Forgbert K, Rieckhoff D, Erbersdobler HF. Impact of beta-cyclodextrin and resistant starch on bile acid metabolism and fecal steroid excretion in regard to their hypolipidemic action in hamsters. Biochim Biophys Acta 1999; 1437: 1-12.
Turley SD, Daggy BP, Dietschy JM. Effect of feeding psyllium and cholestyramine in combination on low density lipoprotein metabolism and fecal bile acid excretion in hamsters with dietary- induced hypercholesterolemia. J Cardiovasc Pharmacol 1996; 27: 71-9.
Turley SD, Daggy BP, Dietschy JM. Cholesterol-lowering action of psyllium mucilloid in the hamster: sites and possible mechanisms of action. Metabolism 1991; 40: 1063-73.
Altmann SW, Davis HRJr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004; 303: 1201-4.
Davis HRJr, Altmann SW. Niemann-Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter. Biochim Biophys Acta 2009; 1791: 679-83.
Davis HRJr, Basso F, Hoos LM, Tetzloff G, Lally SM, Altmann SW. Cholesterol homeostasis by the intestine: lessons from Niemann-Pick C1 Like 1 [NPC1L1). Atheroscler Suppl 2008; 9: 77-81.
Davis HRJr, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, et al. Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 2004; 279: 33586-92.
Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, Crona JH, et al. The target of ezetimibe is Niemann- Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci USA 2005; 102: 8132-7.
Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000; 290: 1771-5.
Berge KE, von Bergmann K, Lutjohann D, Guerra R, Grundy SM, Hobbs HH, Cohen JC. Heritability of plasma noncholes terol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8. J Lipid Res 2002; 43: 486-94.
Graf GA, Cohen JC, Hobbs HH. Missense mutations in ABCG5 and ABCG8 disrupt heterodimerization and trafficking. J Biol Chem 2004; 279: 24881-8.
Graf GA, Li WP, Gerard RD, Gelissen I, White A, Cohen JC, Hobbs HH. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Invest 2002; 110: 659-69.
Graf GA, Yu L, Li WP, Gerard R, Tuma PL, Cohen JC, Hobbs HH. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem 2003; 278: 48275-82.
Hubacek JA, Berge KE, Cohen JC, Hobbs HH. Mutations in ATP-cassette binding proteins G5 (ABCG5) and G8 (ABCG8) causing sitosterolemia. Hum Mutat 2001; 18: 359-60.
Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD, Cohen JC, Hobbs HH. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 2002; 110: 671-80.
Lee MH, Lu K, Hazard S, Yu H, Shulenin S, Hidaka H, Kojima H, et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 2001; 27: 79-83.
Wang HH, Patel SB, Carey MC, Wang DQ. Quantifying anomalous intestinal sterol uptake, lymphatic transport, and biliary secretion in Abcg8(-/-) mice. Hepatology 2007; 45: 998- 1006.
Duan LP, Wang HH, Ohashi A, Wang DQ. Role of intestinal sterol transporters Abcg5, Abcg8, and Npc1l1 in cholesterol absorption in mice: gender and age effects. Am J Physiol 2006; 290: G269-76.
Duan LP, Wang HH, Wang DQ. Cholesterol absorption is mainly regulated by the jejunal and ileal ATP-binding cassette sterol efflux transporters Abcg5 and Abcg8 in mice. J Lipid Res 2004; 45: 1312-23.
Lammert F, Wang DQ. New insights into the genetic regulation of intestinal cholesterol absorption. Gastroenterology 2005; 129: 718-34.
Brown MS, Brannan PG, Bohmfalk HA, Brunschede GY, Dana SE, Helgeson J, Goldstein JL. Use of mutant fibroblasts in the analysis of the regulation of cholesterol metabolism in human cells. J Cell Physiol 1975; 85: 425-36.
Brown MS, Dana SE, Dietschy JM, Siperstein MD. 3-Hydroxy- 3-methylglutaryl coenzyme A reductase. Solubilization and purification of a cold-sensitive microsomal enzyme. J Biol Chem 1973; 248: 4731-8.
Brown MS, Dana SE, Goldstein JL. Receptor-dependent hydrolysis of cholesteryl esters contained in plasma low density lipoprotein. Proc Natl Acad Sci USA 1975; 72: 2925-9.
Brown MS, Dana SE, Goldstein JL. Cholesterol ester formation in cultured human fibroblasts. Stimulation by oxygenated sterols. J Biol Chem 1975; 250: 4025-7.
Brown MS, Dana SE, Goldstein JL. Regulation of 3-hydroxy- 3-methylglutaryl coenzyme A reductase activity in cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem 1974; 249: 789-96.
Brown MS, Dana SE, Goldstein JL. Regulation of 3-hydroxy- 3-methylglutaryl coenzyme A reductase activity in human fibroblasts by lipoproteins. Proc Natl Acad Sci USA 1973; 70: 2162-6.
Dietschy JM, Spady DK. Measurement of rates of cholesterol synthesis using tritiated water. J Lipid Res 1984; 25: 1469-76.
Dietschy JM, Spady DK. Regulation of low density lipoprotein uptake and degradation in different animals species. Agents Actions Suppl 1984; 16: 177-90.
Dietschy JM, Spady DK, Stange EF. Quantitative importance of different organs for cholesterol synthesis and low-density- lipoprotein degradation. Biochem Soc Trans 1983; 11: 639-41.
Dietschy JM, Turley SD, Spady DK. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 1993; 34: 1637-59.
Turley SD, Spady DK, Dietschy JM. Identification of a metabolic difference accounting for the hyper- and hyporesponder phenotypes of cynomolgus monkey. J Lipid Res 1997; 38: 1598-611.
Turley SD, Spady DK, Dietschy JM. Regulation of fecal bile acid excretion in male golden Syrian hamsters fed a cerealbased diet with and without added cholesterol. Hepatology 1997; 25: 797-803.
Turley SD, Spady DK, Dietschy JM. Role of liver in the synthesis of cholesterol and the clearance of low density lipoproteins in the cynomolgus monkey. J Lipid Res 1995; 36: 67-79.
Spady DK, Dietschy JM. Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster, and rat. J Lipid Res 1983; 24: 303-15.
Yu L, Gupta S, Xu F, Liverman AD, Moschetta A, Mangelsdorf DJ, Repa JJ, et al. Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J Biol Chem 2005; 280: 8742-7.
Yu L, Hammer RE, Li-Hawkins J, Von Bergmann K, Lutjohann D, Cohen JC, Hobbs HH. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci USA 2002; 99: 16237-42.
Klett EL, Lu K, Kosters A, Vink E, Lee MH, Altenburg M, Shefer S, et al. A mouse model of sitosterolemia: absence of Abcg8/sterolin-2 results in failure to secrete biliary cholesterol. BMC Med 2004; 2: 5.
Kosters A, Frijters RJ, Schaap FG, Vink E, Plosch T, Ottenhoff R, Jirsa M, et al. Relation between hepatic expression of ATP-binding cassette transporters G5 and G8 and biliary cholesterol secretion in mice. J Hepatol 2003; 38: 710-16.
Wang HH, Lammert F, Schmitz A, Wang DQ. Transgenic overexpression of Abcb11 enhances biliary bile salt outputs, but does not affect cholesterol cholelithogenesis in mice. Eur J Clin Invest 2010; 40: 541-51.
Admirand WH, Small DM. The physicochemical basis of cholesterol gallstone formation in man. J Clin Invest 1968; 47: 1043-52.
Carey MC, Small DM. The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest 1978; 61: 998-1026.
Wang DQ, Carey MC. Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences. J Lipid Res 1996; 37: 2539-49.
Wang DQ, Cohen DE, Lammert F, Carey MC. No pathophysiologic relationship of soluble biliary proteins to cholesterol crystallization in human bile. J Lipid Res 1999; 40: 415-25.
Goldstein JL, Brown MS. Lipoprotein receptors, cholesterol metabolism, and atherosclerosis. Arch Pathol 1975; 99: 181-4.
Brown MS, Goldstein JL. How LDL receptors influence cholesterol and atherosclerosis. Sci Am 1984; 251: 58-66.
Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 1983; 52: 223-61.
Brown MS, Kovanen PT, Goldstein JL. Regulation of plasma cholesterol by lipoprotein receptors. Science 1981; 212: 628-35.
Small DM. Cellular mechanisms for lipid deposition in atherosclerosis (first of two parts). N Engl J Med 1977; 297: 873- 7.
Small DM. George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arteriosclerosis 1988; 8: 103-29.
Small DM, Shipley GG. Physical-chemical basis of lipid deposition in atherosclerosis. Science 1974; 185: 222-9.
Goldstein JL, Brown MS. Regulation of low-density lipoprotein receptors: implications for pathogenesis and therapy of hypercholesterolemia and atherosclerosis. Circulation 1987; 76: 504-7.
Portincasa P, Moschetta A, Di Ciaula A, Pontrelli D, Sasso RC, Wang HH, Wang DQ. Pathophysiology and Cholesterol Gallstone Disease. In: Borzellino G, Cordiano C (eds.). Biliary Lithiasis: Basic Science, Current Diagnosis and Management. 1st Ed. Milano: Springer Italia; S.r.l.; 2008, p. 19-49.
Portincasa P, Moschetta A, Palasciano G. Cholesterol gallstone disease. Lancet 2006; 368: 230-9.
Portincasa P, Moschetta A, Palasciano G. From lipid secretion to cholesterol crystallization in bile. Relevance in cholesterol gallstone disease. Ann Hepatol 2002; 1: 121-8.
Portincasa P, Moschetta A, van Erpecum KJ, Calamita G, Margari A, vanBerge-Henegouwen GP, Palasciano G. Pathways of cholesterol crystallization in model bile and native bile. Dig Liver Dis 2003; 3: 118-26.
Afdhal NH, Smith BF. Cholesterol crystal nucleation: a decade- long search for the missing link in gallstone pathogenesis. Hepatology 1990; 11: 699-702.
Holan KR, Holzbach RT, Hermann RE, Cooperman AM, Claffey WJ. Nucleation time: a key factor in the pathogenesis of cholesterol gallstone disease. Gastroenterology 1979; 77: 611-17.
Holzbach RT. Cholesterol nucleation in bile. Ital J Gastroenterol 1995; 27: 101-5.
Holzbach RT. Nucleation of cholesterol crystals in native bile. Hepatology 1990; 12: 155S-159S; discussion 159S-161S.
Holzbach RT. Recent progress in understanding cholesterol crystal nucleation as a precursor to human gallstone formation. Hepatology 1986; 6: 1403-6.
Holzbach RT. Factors influencing cholesterol nucleation in bile. Hepatology 1984; 4: 173S-176S.
Holzbach RT, Busch N. Nucleation and growth of cholesterol crystals. Kinetic determinants in supersaturated native bile. Gastroenterol Clin North Am 1991; 20: 67-84.
Graham DM, Lyon TP, Gofman JW, Jones HB, Yankley A, Simonton J, White S. Blood lipids and human atherosclerosis. II. The influence of heparin upon lipoprotein metabolism. Circulation 1951; 4: 666-73.
Lindgren FT, Elliott HA, Gofman JW. The ultracentrifugal characterization and isolation of human blood lipids and lipoproteins, with applications to the study of atherosclerosis. J Phys Colloid Chem 1951; 55: 80-93.
De Lalla OF, Gofman JW. Ultracentrifugal analysis of serum lipoproteins. Methods Biochem Anal 1954; 1: 459-78.
Gofman JW, Young W, Tandy R. Ischemic heart disease, atherosclerosis, and longevity. Circulation 1966; 34: 679-97.
Glomset JA, Janssen ET, Kennedy R, Dobbins J. Role of plasma lecithin:cholesterol acyltransferase in the metabolism of high density lipoproteins. J Lipid Res 1966; 7: 638-48.
Rader DJ. New Therapies for Coronary Artery Disease: Genetics Provides a Blueprint. Sci Transl Med 2014; 6: 239ps4.
Tuteja S, Rader DJ. High-density lipoproteins in the prevention of cardiovascular disease: changing the paradigm. Clin Pharmacol Ther 2014; 96: 48-56.
Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet 2014; 384: 618-25.
Rader DJ. Spotlight on HDL biology: new insights in metabolism, function, and translation. Cardiovasc Res 2014; 103: 337-40.
Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest 2006; 116: 3090-100.
Rosenson RS, Brewer HBJr, Ansell B, Barter P, Chapman MJ, Heinecke JW, Kontush A, et al. Translation of high-density lipoprotein function into clinical practice: current prospects and future challenges. Circulation 2013; 128: 1256-67.
Toth PP, Barter PJ, Rosenson RS, Boden WE, Chapman MJ, Cuchel M, D'Agostino RBSr, et al. High-density lipoproteins: a consensus statement from the National Lipid Association. J Clin Lipidol 2013; 7: 484-525.
Birner-Gruenberger R, Schittmayer M, Holzer M, Marsche G. Understanding high-density lipoprotein function in disease: Recent advances in proteomics unravel the complexity of its composition and biology. Prog Lipid Res 2014; 56C: 36-46.
Rosenson RS, Brewer HB, Jr., Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 2012; 125: 1905-19.
Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 2005; 96: 1221-32.
Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 2009; 50 (Suppl.): S189-194.
Khera AV, Rader DJ. Future therapeutic directions in reverse cholesterol transport. Curr Atheroscler Rep 2010; 12: 73-81.
Degoma EM, Rader DJ. Novel HDL-directed pharmacotherapeutic strategies. Nat Rev Cardiol 2011; 8: 266-77.
Sloop CH, Dory L, Roheim PS. Interstitial fluid lipoproteins. J Lipid Res 1987; 28: 225-37.
Nanjee MN, Cooke CJ, Wong JS, Hamilton RL, Olszewski WL, Miller NE. Composition and ultrastructure of size subclasses of normal human peripheral lymph lipoproteins: quantification of cholesterol uptake by HDL in tissue fluids. J Lipid Res 2001; 42: 639-48.
Martel C, Li W, Fulp B, Platt AM, Gautier EL, Westerterp M, Bittman R, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest 2013; 123: 1571-9.
Lim HY, Thiam CH, Yeo KP, Bisoendial R, Hii CS, McGrath KC, Tan KW, et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BImediated transport of HDL. Cell Metab 2013; 17: 671-84.
Kahn ML, Rader DJ. Lymphatics as a new active player in reverse cholesterol transport. Cell Metab 2013; 17: 627-8.
Fernandez-Hernando C. Lymphatic vessels clean up your arteries. J Clin Invest 2013; 123: 1417-19.
Martel C, Randolph GJ. Atherosclerosis and transit of HDL through the lymphatic vasculature. Curr Atheroscler Rep 2013; 15: 354.
Stanley MM, Pineda EP, Cheng SH. Serum cholesterol esters and intestinal cholesterol secretion and absorption in obstructive jaundice due to cancer. N Engl J Med 1959; 261: 368-73.
Kruit JK, Plosch T, Havinga R, Boverhof R, Groot PH, Groen AK, Kuipers F. Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 2005; 128: 147-56.
Temel RE, Sawyer JK, Yu L, Lord C, Degirolamo C, McDaniel A, Marshall S, et al. Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab 2010; 12: 96-102.
de Boer JF, Schonewille M, Boesjes M, Wolters H, Bloks VW, Bos T, van Dijk TH, et al. Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice. Gastroenterology 2017; 152: 1126-1138 e1126.
de Boer JF, Schonewille M, Boesjes M, Wolters H, Bloks VW, Bos T, van Dijk TH, et al. Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice. Gastroenterology 2017.
de Boer JF, Schonewille M, Dikkers A, Koehorst M, Havinga R, Kuipers F, Tietge UJ, et al. Transintestinal and Biliary Cholesterol Secretion Both Contribute to Macrophage Reverse Cholesterol Transport in Rats-Brief Report. Arterioscler Thromb Vasc Biol 2017; 37: 643-6.
Le May C, Berger JM, Lespine A, Pillot B, Prieur X, Letessier E, Hussain MM, et al. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol 2013; 33: 1484-93.
Jakulj L, van Dijk TH, de Boer JF, Kootte RS, Schonewille M, Paalvast Y, Boer T, et al. Transintestinal Cholesterol Transport Is Active in Mice and Humans and Controls Ezetimibe- Induced Fecal Neutral Sterol Excretion. Cell Metab 2016; 24: 783-94.
Wang DQ, Portincasa P, Tso P. Transintestinal cholesterol excretion (TICE): A secondary, non-biliary pathway contributing to reverse cholesterol transport. Hepatology 2017; 66: 1337-40.
Inazu A, Brown ML, Hesler CB, Agellon LB, Koizumi J, Takata K, Maruhama Y, et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990; 323: 1234-8.
Hirano K, Yamashita S, Matsuzawa Y. Pros and cons of inhibiting cholesteryl ester transfer protein. Curr Opin Lipidol 2000; 11: 589-96.
Yamashita S, Hirano K, Sakai N, Matsuzawa Y. Molecular biology and pathophysiological aspects of plasma cholesteryl ester transfer protein. Biochim Biophys Acta 2000; 1529: 257-75.
Asztalos BF, Horvath KV, Kajinami K, Nartsupha C, Cox CE, Batista M, Schaefer EJ, et al. Apolipoprotein composition of HDL in cholesteryl ester transfer protein deficiency. J Lipid Res 2004; 45: 448-55.
Miwa K, Inazu A, Kawashiri M, Nohara A, Higashikata T, Kobayashi J, Koizumi J, et al. Cholesterol efflux from J774 macrophages and Fu5AH hepatoma cells to serum is preserved in CETP-deficient patients. Clin Chim Acta 2009; 402: 19-24.