2018, Number 1
<< Back Next >>
Med Crit 2018; 32 (1)
Classification of septic shock based on unmeasured ions
Pin GE, Sánchez DJS, Martínez REA, García MRC, Peniche MKG, Calyeca SMV
Language: Spanish
References: 43
Page: 13-19
PDF size: 233.61 Kb.
ABSTRACT
Introduction: Septic shock is the main cause of shock in the intensive care unit (62% of all cases); its mortality is around 40 to 50%. In patients with septic shock, metabolic acidosis is the most common acid-base disorder. Risk stratification in critically ill patients allows us to identify patients who are more likely to benefit from treatment.
Material and methods: A prospective, longitudinal, observational and analytical cohort study was conducted. Patients diagnosed with septic shock (according to the guidelines of the Surviving Sepsis Campaign 2016) and metabolic acidosis were admitted to the Intensive Care Unit in the period from June 2015 to July 2017.
Results: Unmeasured ions (RR 2.5, 95% CI 1.03-6.2, p = 0.0001) are independent predictors of survival at admission in the Intensive Care Unit (ICU). Of the total number of deaths (n = 28), the number and percentage differed between each class: class I (n = 2, 7%), class II (n = 6, 21%), class III (n = 9, 32%) and class IV (n = 11, 39%).
Conclusion: The objective of classifying patients with septic shock and metabolic acidosis upon admission is to compare groups to direct the therapeutic effort in the best way. Unmeasured ions are a good choice, have scientific support, and can evaluate and classify patients with septic shock and metabolic acidosis in hospitals such as ours where lactate measurement cannot be performed. Adverse outcomes are higher in class IV (› -9 mEq/L) septic shock according to unmeasured ions.
REFERENCES
Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726-1734.
Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795-1815.
Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840-851.
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580-637.
Murray CJ, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591-608.
Torio CM, Andrews RM. National inpatient hospital costs: the most expensive conditions by payer, 2011: Statistical Brief #160. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. August 2013. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24199255. Consultado el 31 de octubre, 2015.
Kishen R, Honoré PM, Jacobs R, Joannes-Boyau O, De Waele E, De Regt J, et al. Facing acid-base disorders in the third millennium —the Stewart approach revisited. Int J Nephrol Renovasc Dis. 2014;7:209-217.
Sánchez-Díaz JS, Martínez-Rodríguez EA, Méndez-Rubio LP, Peniche-Moguel KG, Huanca-Pacaje JM, López-Guzmán C, et al. Equilibrio ácido-base. Puesta al día. Teoría de Henderson-Hasselbalch. Med Int Mex. 2016;32(6):646-660.
Al-Jaghbeer M, Kellum JA. Acid-base disturbances in intensive care patients: etiology, pathophysiology and treatment. Nephrol Dial Transplant. 2015;30(7):1104-1111.
Gunnerson KJ, Saul M, He S, Kellum JA. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care. 2006;10(1):R22.
Gunnerson KJ, Saul M, Kellum JA. Lactic versus non-lactic metabolic acidosis: outcomes in critically ill patients. Abstract. Crit Care. 2003;7(Suppl 2):S8-S9.
Kruse O, Grunnet N, Barfod C. Blood lactate as a predictor for in-hospital mortality in patients admitted acutely to hospital: a systematic review. Scand J Trauma Resusc Emerg Med. 2011;19:74.
Gunnerson KJ. Clinical review: the meaning of acid-base abnormalities in the intensive care unit part I - epidemiology. Crit Care. 2005;9(5):508-516.
Maciel AT, Park M. Unmeasured anions account for most of the metabolic acidosis in patients with hyperlactatemia. Clinics (Sao Paulo). 2007;62(1):55-62.
Kellum JA. Metabolic acidosis in patients with sepsis: epiphenomenon or part of the pathophysiology? Crit Care Resusc. 2004;6(3):197-203.
Dondorp AM, Chau TT, Phu NH, Mai NT, Loc PP, Chuong LV, et al. Unidentified acids of strong prognostic significance in severe malaria. Crit Care Med. 2004;32(8):1683-1688.
Novović MN, Jevdjićt J. Prediction of mortality with unmeasured anions in critically ill patients on mechanical ventilation. Vojnosanit Pregl. 2014;71(10):936-941.
Mallat J, Michel D, Salaun P, Thevenin D, Tronchon L. Defining metabolic acidosis in patients with septic shock using Stewart approach. Am J Emerg Med. 2012;30(3):391-398.
Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med. 2000;162(6):2246-2251.
Sánchez-Díaz JS, Meneses-Olguín C, Monares-Zepeda E, Torres-Gómez A, Aguirre-Sánchez J, Franco-Granillo J. La diferencia de iones fuertes (DIF) calculada por el método de Fencl-Stewart simplificado es un predictor de mortalidad en pacientes con choque séptico. Arch Med Urg Mex. 2014;6(1):5-11.
Kaplan LJ, Cheung NH, Maerz L, Lui F, Schuster K, Luckianow G, et al. A physicochemical approach to acid-base balance in critically ill trauma patients minimizes errors and reduces inappropriate plasma volume expansion. J Trauma. 2009;66(4):1045-1051.
Adrogué HJ, Gennari FJ, Galla JH, Madias NE. Assessing acid-base disorders. Kidney Int. 2009;76(12):1239-1247.
Kao R, Priestap F, Donner A. To develop a regional ICU mortality prediction model during the first 24 h of ICU admission utilizing MODS and NEMS with six other independent variables from the Critical Care Information System (CCIS) Ontario, Canada. J Intensive Care. 2016;4:16.
Kraut JA, Nagami GT. The serum anion gap in the evaluation of acid-base disorders: what are its limitations and can its effectiveness be improved? Clin J Am Soc Nephrol. 2013;8(11):2018-2024.
Seifter JL. Integration of acid-base and electrolyte disorders. N Engl J Med. 2014;371(19):1821-1831.
Mata-Vicente JF. Escalas pronósticas en la Unidad de Terapia Intensiva. Rev Asoc Mex Med Crit y Ter Int. 2012;26(4):234-241.
Mutschler M, Nienaber U, Brockamp T, Wafaisade A, Fabian T, Paffrath T, et al. Renaissance of base deficit for the initial assessment of trauma patients: a base deficit-based classification for hypovolemic shock developed on data from 16,305 patients derived from the TraumaRegister DGU®. Crit Care. 2013;17(2):R42.
Maciel AT, Park M. Unmeasured anions account for most of the metabolic acidosis in patients with hyperlactatemia. Clinics (Sao Paulo). 2007;62(1):55-62.
Mikulaschek A, Henry SM, Donovan R, Scalea TM. Serum lactate is not predicted by anion gap or base excess after trauma resuscitation. J Trauma. 1996;40(2):218-222; discussion 222-224.
Aduen J, Bernstein WK, Miller J, Kerzner R, Bhatiani A, Davison L, et al. Relationship between blood lactate concentrations and ionized calcium, glucose, and acid-base status in critically ill and noncritically ill patients. Crit Care Med. 1995;23(2):246-252.
Nimmo GR, Grant IS, Mackenzie SJ. Lactate and acid base changes in the critically ill. Postgrad Med J. 1991;67 Suppl 1:S56-S61.
Antonini B, Piva S, Paltenghi M, Candiani A, Latronico N. The early phase of critical illness is a progressive acidic state due to unmeasured anions. Eur J Anaesthesiol. 2008;25(7):566-571.
Ho KM, Lan NS, Williams TA, Harahsheh Y, Chapman AR, Dobb GJ, et al. A comparison of prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill: a cohort study. J Intensive Care. 2016;4:43.
Fidkowski C, Helstrom J. Diagnosing metabolic acidosis in the critically ill: bridging the anion gap, Stewart, and base excess methods. Can J Anaesth. 2009;56(3):247-256.
Boniatti MM, Cardoso PR, Castilho RK, Vieira SR. Acid-base dis18, orders evaluation in critically ill patients: we can improve our diagnostic ability. Intensive Care Med. 2009;35(8):1377-1382.
Sen S, Wiktor A, Berndtson A, Greenhalgh D, Palmieri T. Strong ion gap is associated with mortality in pediatric burn injuries. J Burn Care Res. 2014;35(4):337-341.
Berndtson AE, Palmieri TL, Greenhalgh DG, Sen S. Strong ion difference and gap predict outcomes after adult burn injury. J Trauma Acute Care Surg. 2013;75(4):555-560; discussion 560-561.
Rocktaeschel J, Morimatsu H, Uchino S, Bellomo R. Unmeasured anions in critically ill patients: can they predict mortality. Crit Care Med. 2003;31(8):2131-2136.
Kaplan LJ, Kellum JA. Comparison of acid-base models for prediction of hospital mortality after trauma. Shock. 2008;29(6):662-666.
Kaplan LJ, Kellum JA. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med. 2004;32(5):1120-1124.
Funk GC, Doberer D, Sterz F, Richling N, Kneidinger N, Lindner G, et al. The strong ion gap and outcome after cardiac arrest in patients treated with therapeutic hypothermia: a retrospective study. Intensive Care Med. 2009;35(2):232-239.
Zheng CM, Liu WC, Zheng JQ, Liao MT, Ma WY, Hung KC, et al. Metabolic acidosis and strong ion gap in critically ill patients with acute kidney injury. Biomed Res Int. 2014;2014:819528.
Noritomi DT, Soriano FG, Kellum JA, Cappi SB, Biselli PJ, Libório AB, et al. Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study. Crit Care Med. 2009;37(10):2733-2739.