2018, Número 1
<< Anterior Siguiente >>
Med Crit 2018; 32 (1)
Clasificación del choque séptico a partir de los iones no medidos
Pin GE, Sánchez DJS, Martínez REA, García MRC, Peniche MKG, Calyeca SMV
Idioma: Español
Referencias bibliográficas: 43
Paginas: 13-19
Archivo PDF: 233.61 Kb.
RESUMEN
Introducción: El choque séptico es la principal causa de choque en la Unidad de Cuidados Intensivos (62% de todos los casos), su mortalidad es alrededor de 40 a 50%. En los pacientes con choque séptico, la acidosis metabólica es el trastorno ácido-base más común. La estratificación del riesgo en los pacientes críticamente enfermos nos permite identificar pacientes con mayor probabilidad de ser beneficiados con el tratamiento.
Material y métodos: Se realizó un estudio de cohorte, prospectivo, longitudinal, observacional y analítico. Se incluyeron pacientes con diagnóstico de choque séptico (según las guías de la campaña Sobreviviendo a la Sepsis del año 2016) y acidosis metabólica, ingresados a la Unidad de Cuidados Intensivos en el periodo comprendido entre junio de 2015 y julio de 2017.
Resultados: Los iones no medidos (RR 2.5, IC 95% 1.03-6.2, p = 0.0001) son predictores independientes de supervivencia al ingreso a la Unidad de Cuidados Intensivos (UCI). Del total de defunciones (n = 28), el número y porcentaje fue diferente entre cada clase: clase I (n = 2, 7%), clase II (n = 6, 21%), clase III (n = 9, 32%) y clase IV (n = 11, 39%).
Conclusión: El objetivo de clasificar a los pacientes con choque séptico y acidosis metabólica a su ingreso es comparar grupos para dirigir el esfuerzo terapéutico de la mejor manera. Los iones no medidos son una buena opción, tienen sustento científico; además, pueden evaluar y clasificar pacientes con choque séptico y acidosis metabólica en hospitales como el nuestro, donde la medición de lactato no se puede realizar. Los resultados adversos son mayores en el choque séptico clase IV (› -9 mEq/L), según los iones no medidos.
REFERENCIAS (EN ESTE ARTÍCULO)
Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726-1734.
Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795-1815.
Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840-851.
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580-637.
Murray CJ, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591-608.
Torio CM, Andrews RM. National inpatient hospital costs: the most expensive conditions by payer, 2011: Statistical Brief #160. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. August 2013. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24199255. Consultado el 31 de octubre, 2015.
Kishen R, Honoré PM, Jacobs R, Joannes-Boyau O, De Waele E, De Regt J, et al. Facing acid-base disorders in the third millennium —the Stewart approach revisited. Int J Nephrol Renovasc Dis. 2014;7:209-217.
Sánchez-Díaz JS, Martínez-Rodríguez EA, Méndez-Rubio LP, Peniche-Moguel KG, Huanca-Pacaje JM, López-Guzmán C, et al. Equilibrio ácido-base. Puesta al día. Teoría de Henderson-Hasselbalch. Med Int Mex. 2016;32(6):646-660.
Al-Jaghbeer M, Kellum JA. Acid-base disturbances in intensive care patients: etiology, pathophysiology and treatment. Nephrol Dial Transplant. 2015;30(7):1104-1111.
Gunnerson KJ, Saul M, He S, Kellum JA. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care. 2006;10(1):R22.
Gunnerson KJ, Saul M, Kellum JA. Lactic versus non-lactic metabolic acidosis: outcomes in critically ill patients. Abstract. Crit Care. 2003;7(Suppl 2):S8-S9.
Kruse O, Grunnet N, Barfod C. Blood lactate as a predictor for in-hospital mortality in patients admitted acutely to hospital: a systematic review. Scand J Trauma Resusc Emerg Med. 2011;19:74.
Gunnerson KJ. Clinical review: the meaning of acid-base abnormalities in the intensive care unit part I - epidemiology. Crit Care. 2005;9(5):508-516.
Maciel AT, Park M. Unmeasured anions account for most of the metabolic acidosis in patients with hyperlactatemia. Clinics (Sao Paulo). 2007;62(1):55-62.
Kellum JA. Metabolic acidosis in patients with sepsis: epiphenomenon or part of the pathophysiology? Crit Care Resusc. 2004;6(3):197-203.
Dondorp AM, Chau TT, Phu NH, Mai NT, Loc PP, Chuong LV, et al. Unidentified acids of strong prognostic significance in severe malaria. Crit Care Med. 2004;32(8):1683-1688.
Novović MN, Jevdjićt J. Prediction of mortality with unmeasured anions in critically ill patients on mechanical ventilation. Vojnosanit Pregl. 2014;71(10):936-941.
Mallat J, Michel D, Salaun P, Thevenin D, Tronchon L. Defining metabolic acidosis in patients with septic shock using Stewart approach. Am J Emerg Med. 2012;30(3):391-398.
Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med. 2000;162(6):2246-2251.
Sánchez-Díaz JS, Meneses-Olguín C, Monares-Zepeda E, Torres-Gómez A, Aguirre-Sánchez J, Franco-Granillo J. La diferencia de iones fuertes (DIF) calculada por el método de Fencl-Stewart simplificado es un predictor de mortalidad en pacientes con choque séptico. Arch Med Urg Mex. 2014;6(1):5-11.
Kaplan LJ, Cheung NH, Maerz L, Lui F, Schuster K, Luckianow G, et al. A physicochemical approach to acid-base balance in critically ill trauma patients minimizes errors and reduces inappropriate plasma volume expansion. J Trauma. 2009;66(4):1045-1051.
Adrogué HJ, Gennari FJ, Galla JH, Madias NE. Assessing acid-base disorders. Kidney Int. 2009;76(12):1239-1247.
Kao R, Priestap F, Donner A. To develop a regional ICU mortality prediction model during the first 24 h of ICU admission utilizing MODS and NEMS with six other independent variables from the Critical Care Information System (CCIS) Ontario, Canada. J Intensive Care. 2016;4:16.
Kraut JA, Nagami GT. The serum anion gap in the evaluation of acid-base disorders: what are its limitations and can its effectiveness be improved? Clin J Am Soc Nephrol. 2013;8(11):2018-2024.
Seifter JL. Integration of acid-base and electrolyte disorders. N Engl J Med. 2014;371(19):1821-1831.
Mata-Vicente JF. Escalas pronósticas en la Unidad de Terapia Intensiva. Rev Asoc Mex Med Crit y Ter Int. 2012;26(4):234-241.
Mutschler M, Nienaber U, Brockamp T, Wafaisade A, Fabian T, Paffrath T, et al. Renaissance of base deficit for the initial assessment of trauma patients: a base deficit-based classification for hypovolemic shock developed on data from 16,305 patients derived from the TraumaRegister DGU®. Crit Care. 2013;17(2):R42.
Maciel AT, Park M. Unmeasured anions account for most of the metabolic acidosis in patients with hyperlactatemia. Clinics (Sao Paulo). 2007;62(1):55-62.
Mikulaschek A, Henry SM, Donovan R, Scalea TM. Serum lactate is not predicted by anion gap or base excess after trauma resuscitation. J Trauma. 1996;40(2):218-222; discussion 222-224.
Aduen J, Bernstein WK, Miller J, Kerzner R, Bhatiani A, Davison L, et al. Relationship between blood lactate concentrations and ionized calcium, glucose, and acid-base status in critically ill and noncritically ill patients. Crit Care Med. 1995;23(2):246-252.
Nimmo GR, Grant IS, Mackenzie SJ. Lactate and acid base changes in the critically ill. Postgrad Med J. 1991;67 Suppl 1:S56-S61.
Antonini B, Piva S, Paltenghi M, Candiani A, Latronico N. The early phase of critical illness is a progressive acidic state due to unmeasured anions. Eur J Anaesthesiol. 2008;25(7):566-571.
Ho KM, Lan NS, Williams TA, Harahsheh Y, Chapman AR, Dobb GJ, et al. A comparison of prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill: a cohort study. J Intensive Care. 2016;4:43.
Fidkowski C, Helstrom J. Diagnosing metabolic acidosis in the critically ill: bridging the anion gap, Stewart, and base excess methods. Can J Anaesth. 2009;56(3):247-256.
Boniatti MM, Cardoso PR, Castilho RK, Vieira SR. Acid-base dis18, orders evaluation in critically ill patients: we can improve our diagnostic ability. Intensive Care Med. 2009;35(8):1377-1382.
Sen S, Wiktor A, Berndtson A, Greenhalgh D, Palmieri T. Strong ion gap is associated with mortality in pediatric burn injuries. J Burn Care Res. 2014;35(4):337-341.
Berndtson AE, Palmieri TL, Greenhalgh DG, Sen S. Strong ion difference and gap predict outcomes after adult burn injury. J Trauma Acute Care Surg. 2013;75(4):555-560; discussion 560-561.
Rocktaeschel J, Morimatsu H, Uchino S, Bellomo R. Unmeasured anions in critically ill patients: can they predict mortality. Crit Care Med. 2003;31(8):2131-2136.
Kaplan LJ, Kellum JA. Comparison of acid-base models for prediction of hospital mortality after trauma. Shock. 2008;29(6):662-666.
Kaplan LJ, Kellum JA. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med. 2004;32(5):1120-1124.
Funk GC, Doberer D, Sterz F, Richling N, Kneidinger N, Lindner G, et al. The strong ion gap and outcome after cardiac arrest in patients treated with therapeutic hypothermia: a retrospective study. Intensive Care Med. 2009;35(2):232-239.
Zheng CM, Liu WC, Zheng JQ, Liao MT, Ma WY, Hung KC, et al. Metabolic acidosis and strong ion gap in critically ill patients with acute kidney injury. Biomed Res Int. 2014;2014:819528.
Noritomi DT, Soriano FG, Kellum JA, Cappi SB, Biselli PJ, Libório AB, et al. Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study. Crit Care Med. 2009;37(10):2733-2739.