2017, Number 3
<< Back Next >>
Rev Hematol Mex 2017; 18 (3)
Deoxyribonucleic acid index in patients with acute lymphoblastic leukemia as tool for the classification of risk of early relapse
Parra-Ortega I, Naìjera-Martiìnez N, Mendoza-García E, Vega-Cardelas JM, Hernaìndez-Echaìurregui G, Loìpez-Martiìnez B, Vilchis-OrdonÞez A
Language: Spanish
References: 23
Page: 114-126
PDF size: 829.66 Kb.
ABSTRACT
Background: Deoxyribonucleic acid index (DNA) has close correlation
with another clinical settings as forecast factor in children acute
lymphoblastic leukemia (ALL). It has been described that hypodiploid
DNA index is related to high risk stratification unlike hyperdiploid
DNA index.
Objetive: To assess the clinical usefulness of quantification of DNA
index for the correct classification of risk of early relapse.
Material and Method: Flow cytometry of bone marrow aspirates
(BMA) was performed to determine DNA index in mononuclear cells
(MNCs) in children with acute lymphoblastic leukemia (ALL).
Results: Among 27 ALL BMA, 44% were male. According to EGIL
classification cell lineage and stage of maturation determined lymphoblastic
leukemia identification: ALL corresponded to Pro B (4%),
Pre B (30%) and common Pre B (62%), bifenotypic leukemia’s (4%).
Hypodiploid DNA index corresponded to 22%, hyperdiploid corresponded
to 33.3%.
Conclusion: DNA index is a powerful tool to classify children
with ALL according to risk of early relapse, risk stratification (high
or standard) modifies treatment schedule. It is important that every
diagnostic laboratory develops all the battery on methodologies to
classify accurately children with ALL.
REFERENCES
Vilchis-Ordoñez A, Dorantes-Acosta E, Vadillo E, López- Martínez B, Pelayo R. Early hematopoietic differentiation in acute lymphoblastic leukemia: the interplay between leukemia-initiating cells and abnormal bone marrow microenvironment. In: Mejía-Aranguré JM, editor. Etiology of acute leukemias in children. Springer International Publishing 2016;291-318.
Pelayo R, Santa-Olalla J, Velasco I; Células troncales y medicina regenerativa. 1a ed. México, Programa Universitario de Investigación en Salud/Coordinación de la Investigación Científica, 2012.
Schafer ES, Hunger SP. Optimal therapy for acute lymphoblastic leukemia in adolescents and young adults. Nat Rev Clin Oncol 2011;8:417-24.
Greaves M. Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 2006;3:193-203.
Fajardo-Gutiérrez A, Mejía-Aranguré JM, Hernández-Cruz L y col. Epidemiología descriptiva de las neoplasias malignas en niños. Rev Panam Salud Pública 1999;6:75-88.
Fajardo-Gutiérrez A, Rendón-Macías ME, Mejía-Aranguré JM. Epidemiología del cáncer en niños mexicanos. Resultados globales. Rev Med Inst Mex Seguro Soc 2011;49:43-70.
Peralta-Zaragoza O, Bahena-Román M, Díaz-Benítez CE, Madrid-Marina V. Regulación del ciclo celular y desarrollo de cáncer: perspectivas terapéuticas. Salud Púb Méx 1997;39:451-462.
Lagunas Cruz MC, et al. Ciclo celular: Mecanismos de regulación. Rev Esp en Ciencias de la Salud 2014;17:98-107,
Kastan MB1, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004;432:316-323.
Tembhare P, Badrinath Y, Ghogale S, et al. A novel and easy FxCycle™ violet based flow cytometric method for simultaneous assessment of DNA ploidy and six-color immunophenotyping. Cytometry A 2016;89:281-291.
Zelenin AV, Poletaev AI, Stepanova NG, Barsky VE, et al. 7-amino-actinomycin D as a specific fluorophore for DNA content analysis by laser flow cytometry. Cytometry 1984;5:348-354.
El-Gamal EM, Gouida MS. Flow cytometric study of cell cycle and DNA ploidy in bilharzial bladder cancer. Clin Lab 2015;6:211-218.
Lopez-Otero A, Ruiz-Delgado GJ, Hernandez-Arizpe A, et al. The flow-cytometric DNA content of the plasma cells of patients with multiple myeloma is a prognostic factor: A single institution experience. Hematology 2010;15:378-381.
Rachieru-Sourisseau P, Baranger L, Dastugue N, et al. DNA index in childhood acute lymphoblastic leukaemia: a karyotypic method to validate the flow cytometric measurement. Int J Lab Hematol 2010;32:288-298.
Haixia T, Jihong, Z, Chunwei, L, Zhuogang, et al. Immunophenotypic, cytogenetic and clinical features of 113 acute lymphoblastic. Ann Acad Med Sing 2010;39:49-53.
Carbonari M, Mancaniello D, Tedesco T, Fiorilli M. Flow acetone-staining technique: A highly efficient procedure for the simultaneous analysis of DNA content, cell morphology, and immunophenotype by flow cytometry. Cytometry Part A 2008;73:168-174.
Swerts K, Van Roy N, Benoit Y, et al. DRAQ5: Improved flow cytometric DNA content analysis and minimal residual disease detection in childhood malignancies. Clin Chim Acta 2007;379:154-157.
Loh ML, Mullighan CG. Advances in the genetics of highrisk childhood B progenitor acute lymphoblastic leukemia and juvenile myelomonocytic leukemia: Implications for therapy. Clin Cancer Res 2012;18:2754-2767.
Paulsson K, Forestier E, Lilljebjorn H, et al. Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2010;107:21719-21724.
Tsurusawa M, Katano N, Fujimoto T. Prognosis and DNA aneuploidy in children with acute lymphoblastic leukemia. Haematol Blood Transfus 1990;33:174-181.
Rivera-Luna R, Correa-González C, Altamirano-Alvarez E, et al. Incidence of childhood cancer among Mexican children registered under a public medical insurance program. Int J Cancer 2013;132:1646-1650.
Kenney B, Zieske A, Rinder H, Smith B. DNA ploidy analysis as an adjunct for the detection of relapse in Blineage acute lymphoblastic leukemia. Leuk Lymphoma 2008;49:42-48.
Balandrán JC, Purizaca J, Enciso J, et al. Pro-inflammatoryrelated loss of CXCL12 niche Promotes acute lymphoblastic leukemic progression at the expense of normal lymphopoiesis. Frontiers in immunology 2017;7:1-14.