2017, Number 4
<< Back Next >>
Rev Med Inst Mex Seguro Soc 2017; 55 (4)
Cellular senescence as a common denominator in age-related diseases
Maciel-Barón LÁ, Pérez VI, Torres C, González-Puertos VY, Konigsberg M, López-Diazguerrero NE
Language: Spanish
References: 35
Page: 490-497
PDF size: 111.77 Kb.
ABSTRACT
Cellular senescence has been traditionally characterized by cell cycle
arrest of pot-mitotic cells as a response to a cellular damage. Now is
known that senescent cells secret a diverse array of cytokines, chemokines,
growth factors and other that altogether are called senescence
associates secretory phenotype (SASP), which might have beneficial or
deleterious effects on neighbor cells. This review describes those effects
as well as the relationship between the SASP and several age related
diseases. We also analyze the direction that recent investigations are
turning in order to modulate or avoid the effect of the SASP in those
pathologies.
REFERENCES
Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol. 2011;192(4):547-56.
Hayfl ick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961 Dec;25: 585-621.
Muller M. Cellular senescence: molecular mechanisms, in vivo signifi cance, and redox considerations. Antioxid Redox Signal. 2009;11(1):59-98.
Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M. Replicative senescence: a critical review. Mech Ageing Dev. 2004;125(10-11):827-48.
Toussaint O, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fi broblasts and melanocytes. Exp Gerontol. 2000;35(8): 927-45.
Torres C, Lewis L, Cristofalo VJ. Proteasome inhibitors shorten replicative life span and induce a senescent- like phenotype of human fi broblasts. J Cell Physiol. 2006;207(3):845-53.
Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifi es senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363-7.
Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013;155(5):1119-30.
Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 2003;22(16):4212-22.
Maya-Mendoza A, Merchut-Maya JM, Bartkova J, Bartek J, Streuli CH, Jackson DA. Immortalised breast epithelia survive prolonged DNA replication stress and return to cycle from a senescent-like state. Cell Death Dis. 2014;5e1351.
Freund A, Orjalo AV, Desprez PY, Campisi J. Infl ammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010; 16(5):238-46.
Coppe JP, Patil CK, Rodier F, Krtolica A, Beauséjour CM, Parrinello S, et al. A human-like senescenceassociated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One. 2010;5(2):e9188.
Bhat R, Crowe EP, Bitto A, Moh M, Katsetos CD, Garcia FU, et al. Astrocyte senescence as a component of Alzheimer’s disease. PLoS One. 2012;7(9): e45069.
Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Bio. 2014;15(7):482-96.
Jiménez-Salazar JE, González-Nuñez L, Königsberg- Fainstein M, Gómez-Quiroz LE, Zentella-Dehesa A, Damián-Matsumura P. Estructura y función de las uniones estrechas en la transición epiteliomesénquima (TEM) y la tumorigénesis del cáncer de mama humano. REB. 2012;31(2):49-59.
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178-96.
Coppe JP, Kauser K, Campisi J, Beauséjour CM. Secretion of vascular endothelial growth factor by primary human fi broblasts at senescence. J Biol Chem. 2006;281(40):29568-74.
Loaiza N, Demaria M. Cellular senescence and tumor promotion: Is aging the key? Biochim Biophys Acta. 2016;1865(2):155-67.
Nickoloff BJ, Lingen MW, Chang BD, Shen M, Swift M, Curry J, et al. Tumor suppressor maspin is upregulated during keratinocyte senescence, exerting a paracrine antiangiogenic activity. Cancer Res. 2004;64(9):2956-61.
Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132(3):363-74.
Kawata H, Kamiakito T, Nakaya T, Komatsubara M, Komatsu K, Morita T, et al. Stimulation of cellular senescent processes, including secretory phenotypes and anti-oxidant responses, after androgen deprivation therapy in human prostate cancer. J Steroid Biochem Mol Biol. 2017 Jan;165(Pt B):219-27.
Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232-6.
Magistretti PJ. Neuron-glia metabolic coupling and plasticity. J Exp Biol. 2006;209(Pt 12):2304-11.
Chinta SJ, Woods G, Rane A, Demaria M, Campisi J, Andersen JK. Cellular senescence and the aging brain. Exp Gerontol. 2015;683-7.
Kim JS, Kosek DJ, Petrella JK, Cross JM, Bamman MM. Resting and load-induced levels of myogenic gene transcripts differ between older adults with demonstrable sarcopenia and young men and women. J Appl Physiol. 2005;99(6):2149-58.
Sousa-Victor P, Gutarra S, Garcia-Prat L, Rodriguez- Ubreva J, Ortet L, Ruiz-Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014 Feb 20;506(7488): 316-21.
Nieto-Vazquez I, Fernandez-Veledo S, de Alvaro C, Lorenzo M. Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes. 2008;57(12):3211-21.
Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature. 2006;443(7110):453-7.
Kim YJ, Hwang SH, Lee SY, Shin KK, Cho HH, Bae YC et al. miR-486-5p Induces Replicative Senescence of Human Adipose Tissue-Derived Mesenchymal Stem Cells and Its Expression Is Controlled by High Glucose. Stem Cells Dev. 2012;21(10):1749-60.
Rippe C, Blimline M, Magerko KA, Lawson BR, LaRocca TJ, Donato AJ, et al. MicroRNA changes in human arterial endothelial cells with senescence: relation to apoptosis, eNOS and infl ammation. Exp Gerontol. 2012;47(1):45-51.
Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282-92.
Laberge RM, Zhou L, Sarantos MR, Rodier F, Freund A, de Keizer PL, et al. Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell. 2012;11(4):569-78.
Moiseeva O, Deschenes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell. 2013;12(3):489-98.
Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence- associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17 (8):1049-61.
Kirkland JL, Tchkonia T. Clinical strategies and animal models for developing senolytic agents. Exp Gerontol. 2015;6819-25.