2016, Number 5
<< Back Next >>
Rev Mex Neuroci 2016; 17 (5)
Role of the sodium-calcium exchanger (NCX) in neuronal hypoxia and neuroprotection
Sánchez JC, García-Cuevas AM, Arroyave DCD
Language: Spanish
References: 50
Page: 60-69
PDF size: 407.72 Kb.
ABSTRACT
The sodium calcium exchanger (NCX) is a membrane transporter, which
is fundamental in Ca
2+ intracellular homeostasis, because of its ability
to move Ca
2+ out or into the cell depending on the electrochemical
gradient. NCX regulation is complex and not completely understood.
There are three NCX isoforms, and all of them are involved in processes
related to neuronal survival. In neurons exposed to hypoxia, the NCX
inhibition increases neuronal death, instead NCX stimulation protects
neurons from the hypoxic damage and reduces the infarct area in
animal models. Molecules with the ability of stimulate selectively
NCX have been developed and it could be the baseline for future
neuroprotective strategies; however, further research is needed to
better understand NCX regulation in physiological stress situations
and its relevance in the mechanism of a number of agents that have
been associated with neuroprotection or neurotoxicity. NCX is a
potential therapeutic target on hypoxia conditions that requires
more research to determine the effectiveness of its pharmacological
handling; also, it is necessary to establish the importance that possess
other Ca
2+ transport mechanisms on the neuronal hypoxia, to develop
clinically effective strategies of neuroprotection.
REFERENCES
Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2013;380(9859):2095-128.
Feigin V, Forouzanfar M, Krishnamurthi R, Mensah G, Connor M, Bennett D, et al. Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010) and the GBD Stroke Experts Group. Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245-54.
Sanchez JC, Lopez-Zapata DF, Romero-Leguizamon CR. [Calcium transport mechanisms in neuroprotection and neurotoxicity]. Rev Neurol. 2010;51(10):624-32.
Giacomello M, Drago I, Pizzo P, Pozzan T. Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ. 2007;14(7):1267-74.
Hajnóczky G, Davies E, Madesh M. Calcium signaling and apoptosis. Biochemical and Biophysical Research Communications. 2003;304(3):445-54.
Bers DM, Weber CR. Na/Ca exchange function in intact ventricular myocytes. Annals of the New York Academy of Sciences. 2002;976(1):500-12.
Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiological reviews. 1999;79(3):763-854.
Fujioka Y, Hiroe K, Matsuoka S. Regulation kinetics of Na+‐Ca2+ exchange current in guinea‐pig ventricular myocytes. The Journal of physiology. 2000;529(3):611-23.
Cai X, Lytton J. The cation/Ca(2+) exchanger superfamily: phylogenetic analysis and structural implications. Molecular biology and evolution. 2004;21(9):1692-703.
Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, et al. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A. 2010;107(1):436-41.
Kemény LV, Schnúr A, Czepán M, Rakonczay Z, Gál E, Lonovics J, et al. Na+/Ca2+ exchangers regulate the migration and proliferation of human gastric myofibroblasts. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2013;305(8):G552-G63.
Staiano RI, Granata F, Secondo A, Petraroli A, Loffredo S, Frattini A, et al. Expression and function of Na+/Ca2+ exchangers 1 and 3 in human macrophages and monocytes. European journal of immunology. 2009;39(5):1405-18.
Nicoll DA, Ottolia M, Philipson KD. Toward a topological model of the NCX1 exchanger. Ann N Y Acad Sci. 2002;976:11-8.
Schnetkamp PP. The SLC24 gene family of Na(+)/Ca(2)(+)-K(+) exchangers: from sight and smell to memory consolidation and skin pigmentation. Molecular aspects of medicine. 2013;34(2-3):455-64.
Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science. 2012;335(6069):686-90.
John SA, Liao J, Jiang Y, Ottolia M. The cardiac Na+-Ca2+ exchanger has two cytoplasmic ion permeation pathways. Proceedings of the National Academy of Sciences. 2013;110(18):7500-5.
Annunziato L, Pignataro G, Di Renzo GF. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev. 2004;56(4):633-54.
Boyman L, Hagen BM, Giladi M, Hiller R, Lederer WJ, Khananshvili D. Proton-sensing Ca2+ binding domains regulate the cardiac Na+/Ca2+ exchanger. J Biol Chem. 2011;286(33):28811-20.
DiPolo R, Beauge L. Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol Rev. 2006;86(1):155-203.
Yang YC, Fann MJ, Chang WH, Tai LH, Jiang JH, Kao LS. Regulation of sodium-calcium exchanger activity by creatine kinase under energy-compromised conditions. J Biol Chem. 2010;285(36):28275-85.
Roome CJ, Power EM, Empson RM. Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse. J Neurophysiol. 2013;109(6):1669-80.
Reyes RC, Verkhratsky A, Parpura V. Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes. ASN neuro. 2012;4(1).
Lipscombe D, Helton TD, Xu W. L-type calcium channels: the low down. J Neurophysiol. 2004;92(5):2633-41.
Noda M, Ifuku M, Mori Y, Verkhratsky A. Calcium influx through reversed NCX controls migration of microglia. Adv Exp Med Biol. 2013;961:289-94.
Dubinsky JM, Rothman SM. Intracellular calcium concentrations during” chemical hypoxia” and excitotoxic neuronal injury. The Journal of neuroscience. 1991;11(8):2545-51.
Valsecchi V, Pignataro G, Del Prete A, Sirabella R, Matrone C, Boscia F, et al. NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke. 2011;42(3):754-63.
Boscia F, D’Avanzo C, Pannaccione A, Secondo A, Casamassa A, Formisano L, et al. Silencing or knocking out the Na(+)/Ca(2+) exchanger-3 (NCX3) impairs oligodendrocyte differentiation. Cell Death Differ. 2012;19(4):562-72.
Tomes DJ, Agrawal SK. Role of Na+-Ca 2+ exchanger after traumatic or hypoxic/ischemic injury to spinal cord white matter. The Spine Journal. 2002;2(1):35-40.
Tortiglione A, Picconi B, Barone I, Centonze D, Rossi S, Costa C, et al. Na+/Ca2+ exchanger maintains ionic homeostasis in the peri-infarct area. Stroke. 2007;38(5):1614-20.
Jeon D, Chu K, Jung KH, Kim M, Yoon BW, Lee CJ, et al. Na(+)/Ca(2+) exchanger 2 is neuroprotective by exporting Ca(2+) during a transient focal cerebral ischemia in the mouse. Cell Calcium. 2008;43(5):482-91.
Molinaro P, Cuomo O, Pignataro G, Boscia F, Sirabella R, Pannaccione A, et al. Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J Neurosci. 2008;28(5):1179-84.
Formisano L, Saggese M, Secondo A, Sirabella R, Vito P, Valsecchi V, et al. The two isoforms of the Na+/Ca2+ exchanger, NCX1 and NCX3, constitute novel additional targets for the prosurvival action of Akt/protein kinase B pathway. Mol Pharmacol. 2008;73(3):727-37.
Boscia F, Gala R, Pannaccione A, Secondo A, Scorziello A, Di Renzo G, et al. NCX1 expression and functional activity increase in microglia invading the infarct core. Stroke. 2009;40(11):3608-17.
Sirabella R, Secondo A, Pannaccione A, Scorziello A, Valsecchi V, Adornetto A, et al. Anoxia-induced NF-kappaB-dependent upregulation of NCX1 contributes to Ca2+ refilling into endoplasmic reticulum in cortical neurons. Stroke. 2009;40(3):922-9.
Pannaccione A, Secondo A, Molinaro P, D’Avanzo C, Cantile M, Esposito A, et al. A new concept: Abeta1-42 generates a hyperfunctional proteolytic NCX3 fragment that delays caspase-12 activation and neuronal death. J Neurosci. 2012;32(31):10609-17.
Sisalli MJ, Secondo A, Esposito A, Valsecchi V, Savoia C, Di Renzo GF, et al. Endoplasmic reticulum refilling and mitochondrial calcium extrusion promoted in neurons by NCX1 and NCX3 in ischemic preconditioning are determinant for neuroprotection. Cell Death Differ. 2014;21(7):1142-9.
Takuma K, Ago Y, Matsuda T. The glial sodium-calcium exchanger: a new target for nitric oxidemediated cellular toxicity. Current Protein and Peptide Science. 2013;14(1):43-50.
Brittain MK, Brustovetsky T, Sheets PL, Brittain JM, Khanna R, Cummins TR, et al. Delayed calcium dysregulation in neurons requires both the NMDA receptor and the reverse Na+/Ca2+ exchanger. Neurobiology of disease. 2012;46(1):109-17.
Molinaro P, Cantile M, Cuomo O, Secondo A, Pannaccione A, Ambrosino P, et al. Neurounina-1, a novel compound that increases Na+/Ca2+ exchanger activity, effectively protects against stroke damage. Mol Pharmacol. 2013;83(1):142-56.
Cross JL, Boulos S, Shepherd KL, Craig AJ, Lee S, Bakker AJ, et al. High level over-expression of different NCX isoforms in HEK293 cell lines and primary neuronal cultures is protective following oxygen glucose deprivation. Neuroscience research. 2012;73(3):191-8.
Formisano L, Guida N, Valsecchi V, Pignataro G, Vinciguerra A, Pannaccione A, et al. NCX1 is a new rest target gene: role in cerebral ischemia. Neurobiology of disease. 2013;50:76-85.
Vinciguerra A, Formisano L, Cerullo P, Guida N, Cuomo O, Esposito A, et al. MicroRNA-103-1 Selectively Downregulates Brain NCX1 and Its Inhibition by Anti-miRNA Ameliorates Stroke Damage and Neurological Deficits. Molecular therapy : the journal of the American Society of Gene Therapy. 2014;22(10):1829-38.
Iwamoto T, Shigekawa M. Differential inhibition of Na+/Ca2+ exchanger isoforms by divalent cations and isothiourea derivative. American Journal of Physiology-Cell Physiology. 1998;275(2):C423-C30.
Chen R-W, Chuang D-M. Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression A prominent role in neuroprotection against excitotoxicity. Journal of Biological Chemistry. 1999;274(10):6039-42.
Salazar M, Pariente JA, Salido GM, González A. Ethanol induces glutamate secretion by Ca 2+ mobilization and ROS generation in rat hippocampal astrocytes. Neurochemistry international. 2008;52(6):1061-7.
46. Herrera-Peco I, Sola R, Osejo V, Wix-Ramos R, Pastor J. Participación de los astrocitos activados mediante albúmina en la epileptogénesis. Rev Neurol. 2008;47:582-7.
Foradori C, Werner S, Sandau U, Clapp T, Handa R. Activation of the androgen receptor alters the intracellular calcium response to glutamate in primary hippocampal neurons and modulates sarco/ endoplasmic reticulum calcium ATPase 2 transcription. Neuroscience. 2007;149(1):155-64.
Tsang S, Wong SS, Wu S, Kravtsov GM, Wong T-M. Testosterone-augmented contractile responses to α1-and β1-adrenoceptor stimulation are associated with increased activities of RyR, SERCA, and NCX in the heart. American Journal of Physiology-Cell Physiology. 2009;296(4):C766-C82.
Sanchez JC, Lopez-Zapata DF, Francis L, De Los Reyes L. Effects of estradiol and IGF-1 on the sodium calcium exchanger in rat cultured cortical neurons. Cell Mol Neurobiol. 2011;31(4):619-27.
Sánchez JC, López-Zapata DF, Romero-Leguizamón CR. Mecanismos de transporte de calcio en neuroprotección y neurotoxicidad. Revista de neurología. 2010;51(10):624-32.