2016, Number 2
<< Back Next >>
Investigación en Discapacidad 2016; 5 (2)
Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells
Huerta-Cantillo J, Navarro-García F
Language: English
References: 145
Page: 96-115
PDF size: 359.39 Kb.
ABSTRACT
In the last years, the indiscriminate use of conventional antibiotics has generated a worrisome increase of resistant pathogens. Antimicrobial peptides (AMPs) are considered a plausible alternative therapy against pathogens due to their structural and functional characteristics, as well as their low toxicity against eukaryotic cells and their broad spectrum of action against different pathogens, including Gram-negative and Gram-positive bacteria, fungi, parasite and virus. Interestingly, AMPs also have the capability to recognize certain types of plasma membranes, and this selectivity allows differential recognition of normal cells, non-malignant tumor cells and malignant tumor cells; thereby the use of these AMPs could be a viable alternative for cancer treatment. These peptides can be isolated from different organisms, such as microorganisms, plants and animals. Such peptides are amphipathic and cationic molecules of low molecular weight and they have a low probability to generate resistance. Therefore these natural peptides have been utilized as the base for synthetizing new analog peptides with chemical or structural modifications for improving their antimicrobial stability and efficiency. In this review, we focused on an overview of the AMPs: properties, mechanisms of action, and their different applications for combating pathogens in diverse fields, as well as their use due to the anticancer activity. We also focused on some strategies for the design of new peptides, and finally, we discussed some drawbacks to overcome their use as therapeutic agents.
REFERENCES
Pushpanathan M, Gunasekaran P, Rajendhran J. Antimicrobial peptides: versatile biological properties. Int J Pept. 2013; 2013: 675391.
Boman HG. Innate immunity and the normal microflora. Immunol Rev. 2000; 173: 5-16.
3.Montano-Perez K, Vargas-Albores F. Péptidos antimicrobianos: un mecanismo de defensa ancestral con mucho futuro. Interciencia. 2002; 27: 21-27.
Kim JY, Park SC, Hwang I et al. Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci. 2009; 10 (6): 2860-2872.
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002; 415 (6870): 389-395.
Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006; 24 (12): 1551-1557.
Guntupalli K, Dean N, Morris PE et al. A phase 2 randomized, double-blind, placebo-controlled study of the safety and efficacy of talactoferrin in patients with severe sepsis. Crit Care Med. 2013; 41 (3): 706-716.
Zhang M, Zhao J, Zheng J. Molecular understanding of a potential functional link between antimicrobial and amyloid peptides. Soft Matter. 2014; 10 (38): 7425-7451.
Rao AG. Antimicrobial peptides. Mol Plant Microbe Interact. 1995; 8 (1): 6-13.
Nissen-Meyer J, Nes IF. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol. 1997; 167 (2-3): 67-77.
Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008; 1778 (2): 357-375.
Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010; 1 (5): 440-464.
Afacan NJ, Yeung AT, Pena OM et al. Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des. 2012; 18 (6): 807-819.
Mookherjee N, Hancock RE. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci. 2007; 64 (7-8): 922-933.
Bowdish DM, Hancock RE. Anti-endotoxin properties of cationic host defence peptides and proteins. J Endotoxin Res. 2005; 11 (4): 230-236.
Davidson DJ, Currie AJ, Reid GS et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol. 2004; 172 (2): 1146-1156.
Wu WK, Wong CC, Li ZJ et al. Cathelicidins in inflammation and tissue repair: Potential therapeutic applications for gastrointestinal disorders. Acta Pharmacol Sin. 2010; 31 (9): 1118-1122.
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012; 32 (2): 143-171.
Yang SC, Lin CH, Sung CT et al. Corrigendum: antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol. 2014; 5: 683.
Cascales E, Buchanan SK, Duche D et al. Colicin biology. Microbiol Mol Biol Rev. 2007; 71 (1): 158-229.
Duquesne S, Petit V, Peduzzi J et al. Structural and functional diversity of microcins, gene-encoded antibacterial peptides from enterobacteria. J Mol Microbiol Biotechnol. 2007; 13 (4): 200-209.
Guzman-Rodriguez JJ, Ochoa-Zarzosa A, Lopez-Gomez R et al. Plant antimicrobial peptides as potential anticancer agents. Biomed Res Int. 2015; 2015: 735087.
Lacerda AF, Vasconcelos EA, Pelegrini PB et al. Antifungal defensins and their role in plant defense. Front Microbiol. 2014; 5: 116.
Ezzati-Tabrizi R, Farrokhi N, Talaei-Hassanloui R et al. Insect inducible antimicrobial peptides and their applications. Curr Protein Pept Sci. 2013; 14 (8): 698-710.
Otvos L, Jr. Antibacterial peptides isolated from insects. J Pept Sci. 2000; 6 (10): 497-511.
Ponnappan N, Budagavi DP, Yadav BK et al. Membrane-active peptides from marine organisms-antimicrobials, cell-penetrating peptides and Peptide toxins: applications and prospects. Probiotics Antimicrob Proteins. 2015; 7 (1): 75-89.
Otero-Gonzalez AJ, Magalhaes BS, Garcia-Villarino M et al. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J. 2010; 24 (5): 1320-1334.
Sperstad SV, Haug T, Blencke HM et al. Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnol Adv. 2011; 29 (5): 519-530.
Wells KD. The ecology and behaviour of amphibians. Chicago: University of Chicago Press 2007.
Kreil G. Antimicrobial peptides from amphibian skin: an overview. Ciba Found Symp. 1994; 186: 77-85; discussion 85-90.
Konig E, Bininda-Emonds OR, Shaw C. The diversity and evolution of anuran skin peptides. Peptides. 2015; 63: 96-117.
Cuperus T, Coorens M, van Dijk A et al. Avian host defense peptides. Dev Comp Immunol. 2013; 41 (3): 352-369.
Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005; 6 (6): 551-557.
Jarczak J, Kosciuczuk EM, Lisowski P et al. Defensins: natural component of human innate immunity. Hum Immunol. 2013; 74 (9): 1069-1079.
Lehrer RI, Lu W. alpha-Defensins in human innate immunity. Immunol Rev. 2012; 245 (1): 84-112.
Joly S, Maze C, McCray PB, Jr. et al. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol. 2004; 42 (3): 1024-1029.
Ganz T. Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen. 2005; 8 (3): 209-217.
Lehrer RI, Cole AM, Selsted ME. theta-Defensins: cyclic peptides with endless potential. J Biol Chem. 2012; 287 (32): 27014-27019.
Penberthy WT, Chari S, Cole AL et al. Retrocyclins and their activity against HIV-1. Cell Mol Life Sci. 2011; 68 (13): 2231-2242.
Leonova L, Kokryakov VN, Aleshina G et al. Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol. 2001; 70 (3): 461-464.
Cole AM, Lehrer RI. Minidefensins: antimicrobial peptides with activity against HIV-1. Curr Pharm Des. 2003; 9 (18): 1463-1473.
Kosciuczuk EM, Lisowski P, Jarczak J et al. Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep. 2012; 39 (12): 10957-10970.
Schroder JM. Epithelial peptide antibiotics. Biochem Pharmacol. 1999; 57 (2): 121-134.
Sorensen OE, Borregaard N, Cole AM. Antimicrobial peptides in innate immune responses. Contrib Microbiol. 2008; 15: 61-77.
Meade KG, Cormican P, Narciandi F et al. Bovine beta-defensin gene family: opportunities to improve animal health? Physiol Genomics. 2014; 46 (1): 17-28.
Hicks RP, Bhonsle JB, Venugopal D et al. De novo design of selective antibiotic peptides by incorporation of unnatural amino acids. J Med Chem. 2007; 50 (13): 3026-3036.
Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005; 3 (3): 238-250.
Dubin A, Mak P, Dubin G et al. New generation of peptide antibiotics. Acta Biochim Pol. 2005; 52 (3): 633-638.
Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011; 29 (9): 464-472.
Cotter PD, Ross RP, Hill C. Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol. 2013; 11 (2): 95-105.
Cole AM. Minidefensins and other antimicrobial peptides: candidate anti-HIV microbicides. Expert Opin Ther Targets. 2003; 7 (3): 329-341.
Barlow PG, Findlay EG, Currie SM et al. Antiviral potential of cathelicidins. Future Microbiol. 2014; 9 (1): 55-73.
Zairi A, Tangy F, Bouassida K et al. Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides-a mini review. J Biomed Biotechnol. 2009; 2009: 452567.
Sutyak KE, Anderson RA, Dover SE et al. Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect Dis Obstet Gynecol. 2008; 2008: 540758.
Ghrairi T, Chaftar N, Hani K. Bacteriocins: recent advances and opportunities. In: Preservation PiF, ed. Bhat R, Karim Alias A, Paliyath G Oxford, UK: Wiley-Blackwell 2012. pp. 485-511.
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013; 63 (1): 11-30.
Gatti L, Zunino F. Overview of tumor cell chemoresistance mechanisms. Methods Mol Med. 2005; 111: 127-148.
Leuschner C, Hansel W. Membrane disrupting lytic peptides for cancer treatments. Curr Pharm Des. 2004; 10 (19): 2299-2310.
Glukhov E, Stark M, Burrows LL et al. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J Biol Chem. 2005; 280 (40): 33960-33967.
Dobrzynska I, Szachowicz-Petelska B, Sulkowski S et al. Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol Cell Biochem. 2005; 276 (1-2): 113-119.
Yoon WH, Park HD, Lim K et al. Effect of O-glycosylated mucin on invasion and metastasis of HM7 human colon cancer cells. Biochem Biophys Res Commun. 1996; 222 (3): 694-699.
Boland MP, Separovic F. Membrane interactions of antimicrobial peptides from Australian tree frogs. Biochim Biophys Acta. 2006; 1758 (9): 1178-1183.
Mader JS, Hoskin DW. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs. 2006; 15 (8): 933-946.
Gaspar D, Veiga AS, Castanho MA. From antimicrobial to anticancer peptides. A review. Front Microbiol. 2013; 4: 294.
Mulder KC, Lima LA, Miranda VJ et al. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol. 2013; 4: 321.
Joo NE, Ritchie K, Kamarajan P et al. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 2012; 1 (3): 295-305.
Tsai TL, Li AC, Chen YC et al. Antimicrobial peptide m2163 or m2386 identified from Lactobacillus casei ATCC 334 can trigger apoptosis in the human colorectal cancer cell line SW480. Tumour Biol. 2015; 36 (5): 3775-3789.
Lin P, Wong JH, Ng TB. A defensin with highly potent antipathogenic activities from the seeds of purple pole bean. Biosci Rep. 2009; 30 (2): 101-109.
Ngai PH, Ng TB. Coccinin, an antifungal peptide with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from large scarlet runner beans. Peptides. 2004; 25 (12): 2063-2068.
Ngai PH, Ng TB. Phaseococcin, an antifungal protein with antiproliferative and anti-HIV-1 reverse transcriptase activities from small scarlet runner beans. Biochem Cell Biol. 2005; 83 (2): 212-220.
Gerlach SL, Rathinakumar R, Chakravarty G et al. Anticancer and chemosensitizing abilities of cycloviolacin 02 from Viola odorata and psyle cyclotides from Psychotria leptothyrsa. Biopolymers. 2010; 94 (5): 617-625.
Prabhu S, Dennison SR, Mura M et al. Cn-AMP2 from green coconut water is an anionic anticancer peptide. J Pept Sci. 2014; 20 (12): 909-915.
Mishra A, Gauri SS, Mukhopadhyay SK et al. Identification and structural characterization of a new pro-apoptotic cyclic octapeptide cyclosaplin from somatic seedlings of Santalum album L. Peptides. 2014; 54: 148-158.
Suttmann H, Retz M, Paulsen F et al. Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol. 2008; 8: 5.
Wu JM, Jan PS, Yu HC et al. Structure and function of a custom anticancer peptide, CB1a. Peptides. 2009; 30 (5): 839-848.
Xia L, Wu Y, Kang S et al. CecropinXJ, a silkworm antimicrobial peptide, induces cytoskeleton disruption in esophageal carcinoma cells. Acta Biochim Biophys Sin (Shanghai). 2014; 46 (10): 867-876.
Kang BR, Kim H, Nam SH et al. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway. BMB Rep. 2012; 45 (2): 85-90.
Lee JH, Kim IW, Kim SH et al. Anticancer activity of CopA3 dimer peptide in human gastric cancer cells. BMB Rep. 2014.
Kim IW, Lee JH, Kwon YN et al. Anticancer activity of a synthetic peptide derived from harmoniasin, an antibacterial peptide from the ladybug Harmonia axyridis. Int J Oncol. 2013; 43 (2): 622-628.
Zhu LN, Fu CY, Zhang SF et al. Novel cytotoxic exhibition mode of antimicrobial peptide anoplin in MEL cells, the cell line of murine Friend leukemia virus-induced leukemic cells. J Pept Sci. 2013; 19 (9): 566-574.
Zhang W, Li J, Liu LW et al. A novel analog of antimicrobial peptide Polybia-MPI, with thioamide bond substitution, exhibits increased therapeutic efficacy against cancer and diminished toxicity in mice. Peptides. 2010; 31 (10): 1832-1838.
Lee JH, Kim IW, Kim SH et al. Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J Microbiol Biotechnol. 2015.
Hsiao YC, Wang KS, Tsai SH et al. Anticancer activities of an antimicrobial peptide derivative of Ixosin-B amide. Bioorg Med Chem Lett. 2013; 23 (20): 5744-5747.
Chen J, Xu XM, Underhill CB et al. Tachyplesin activates the classic complement pathway to kill tumor cells. Cancer Res. 2005; 65 (11): 4614-4622.
Meng MX, Ning JF, Yu JY et al. Antitumor activity of recombinant antimicrobial peptide penaeidin-2 against kidney cancer cells. J Huazhong Univ Sci Technolog Med Sci. 2014; 34 (4): 529-534.
Liu S, Yang H, Wan L et al. Penetratin-mediated delivery enhances the antitumor activity of the cationic antimicrobial peptide Magainin II. Cancer Biother Radiopharm. 2013; 28 (4): 289-297.
Wang C, Zhou Y, Li S et al. Anticancer mechanisms of temporin-1CEa, an amphipathic alpha-helical antimicrobial peptide, in Bcap-37 human breast cancer cells. Life Sci. 2013; 92 (20-21): 1004-1014.
van Zoggel H, Carpentier G, Dos Santos C et al. Antitumor and angiostatic activities of the antimicrobial peptide dermaseptin B2. PLoS One. 2012; 7 (9): e44351.
Gu Y, Dong N, Shan A et al. Antitumor effect of the antimicrobial peptide GLI13-8 derived from domain of the avian beta-defensin-4. Acta Biochim Biophys Sin (Shanghai). 2013; 45 (11): 904-911.
Chen JY, Lin WJ, Lin TL. A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells. Peptides. 2009; 30 (9): 1636-1642.
Hilchie AL, Doucette CD, Pinto DM et al. Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Res. 2011; 13 (5): R102.
Lin HJ, Huang TC, Muthusamy S et al. Piscidin-1, an antimicrobial peptide from fish (hybrid striped bass morone saxatilis x M. chrysops), induces apoptotic and necrotic activity in HT1080 cells. Zoolog Sci. 2012; 29 (5): 327-332.
Wu SP, Huang TC, Lin CC et al. Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar Drugs. 2012; 10 (8): 1852-1872.
Li D, Wang W, Shi HS et al. Gene therapy with beta-defensin 2 induces antitumor immunity and enhances local antitumor effects. Hum Gene Ther. 2014; 25 (1): 63-72.
Furlong SJ, Ridgway ND, Hoskin DW. Modulation of ceramide metabolism in T-leukemia cell lines potentiates apoptosis induced by the cationic antimicrobial peptide bovine lactoferricin. Int J Oncol. 2008; 32 (3): 537-544.
Chow JY, Li ZJ, Wu WK et al. Cathelicidin a potential therapeutic peptide for gastrointestinal inflammation and cancer. World J Gastroenterol. 2013; 19 (18): 2731-2735.
Kuroda K, Fukuda T, Isogai H et al. Antimicrobial peptide FF/CAP18 induces apoptotic cell death in HCT116 colon cancer cells via changes in the metabolic profile. Int J Oncol. 2015; 46 (4): 1516-1526.
Aoki W, Kuroda K, Ueda M. Next generation of antimicrobial peptides as molecular targeted medicines. J Biosci Bioeng. 2012; 114 (4): 365-370.
Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2005; 30 (7): 505-515.
He J, Yarbrough DK, Kreth J et al. Systematic approach to optimizing specifically targeted antimicrobial peptides against Streptococcus mutans. Antimicrob Agents Chemother. 2010; 54 (5): 2143-2151.
Eckert R, Qi F, Yarbrough DK et al. Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother. 2006; 50 (4): 1480-1488.
Villarruel-Franco R, Huizar-Lopez R, Corrales M et al. Péptidos naturales antimicrobianos: escudo esencial de la respuesta inmune. Investigación en Salud. 2004; 6 (3): 170-179.
Fjell CD, Hiss JA, Hancock RE et al. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. 2012; 11 (1): 37-51.
Papo N, Shahar M, Eisenbach L et al. A novel lytic peptide composed of DL-amino acids selectively kills cancer cells in culture and in mice. J Biol Chem. 2003; 278 (23): 21018-21023.
Ng-Choi I, Soler M, Guell I et al. Antimicrobial peptides incorporating non-natural amino acids as agents for plant protection. Protein Pept Lett. 2014; 21 (4): 357-367.
Taboureau O, Olsen OH, Nielsen JD et al. Design of novispirin antimicrobial peptides by quantitative structure-activity relationship. Chem Biol Drug Des. 2006; 68 (1): 48-57.
Juretic D, Vukicevic D, Ilic N et al. Computational design of highly selective antimicrobial peptides. J Chem Inf Model. 2009; 49 (12): 2873-2882.
Juretic D, Vukicevic D, Petrov D et al. Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. Eur Biophys J. 2011; 40 (4): 371-385.
Jenssen H, Gutteberg TJ, Lejon T. Modelling of anti-HSV activity of lactoferricin analogues using amino acid descriptors. J Pept Sci. 2005; 11 (2): 97-103.
Hilpert K, Elliott MR, Volkmer-Engert R et al. Sequence requirements and an optimization strategy for short antimicrobial peptides. Chem Biol. 2006; 13 (10): 1101-1107.
Langham AA, Khandelia H, Schuster B et al. Correlation between simulated physicochemical properties and hemolycity of protegrin-like antimicrobial peptides: predicting experimental toxicity. Peptides. 2008; 29 (7): 1085-1093.
Cherkasov A. Inductive QSAR descriptors. Distinguishing compounds with antibacterial activity by Artificial Neural Networks. Int J Mol Sci. 2005; 6: 63-86
Hilpert K, Fjell CD, Cherkasov A. Short linear cationic antimicrobial peptides: screening, optimizing, and prediction. Methods Mol Biol. 2008; 494: 127-159.
Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med. 2010; 362 (19): 1804-1813.
Muhle SA, Tam JP. Design of Gram-negative selective antimicrobial peptides. Biochemistry. 2001; 40 (19): 5777-5785.
Giuliani A, Pirri G, Rinaldi AC. Antimicrobial peptides: the LPS connection. Methods Mol Biol. 2010; 618: 137-154.
Bhattacharjya S. De novo designed lipopolysaccharide binding peptides: structure based development of antiendotoxic and antimicrobial drugs. Curr Med Chem. 2010; 17 (27): 3080-3093.
David SA. Antimicrobial peptides for gram-negative sepsis: a case for the polymyxins. Front Immunol. 2012; 3: 252.
Li LN, Guo LH, Lux R et al. Targeted antimicrobial therapy against Streptococcus mutans establishes protective non-cariogenic oral biofilms and reduces subsequent infection. Int J Oral Sci. 2010; 2 (2): 66-73.
Kaplan CW, Sim JH, Shah KR et al. Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob Agents Chemother. 2011; 55 (7): 3446-3452.
Hou L, Zhao X, Wang P et al. Antitumor activity of antimicrobial peptides containing CisoDGRC in CD13 negative breast cancer cells. PLoS One. 2013; 8 (1): e53491.
Acuna L, Picariello G, Sesma F et al. A new hybrid bacteriocin, Ent35-MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria. FEBS Open Bio. 2012; 2: 12-19.
Spudy B, Sonnichsen FD, Waetzig GH et al. Identification of structural traits that increase the antimicrobial activity of a chimeric peptide of human beta-defensins 2 and 3. Biochem Biophys Res Commun. 2012; 427 (1): 207-211.
Cao Y, Yu RQ, Liu Y et al. Design, recombinant expression, and antibacterial activity of the cecropins-melittin hybrid antimicrobial peptides. Curr Microbiol. 2010; 61 (3): 169-175.
Wu R, Wang Q, Zheng Z et al. Design, characterization and expression of a novel hybrid peptides melittin (1-13)-LL37 (17-30). Mol Biol Rep. 2014; 41 (7): 4163-4169.
Joshi S, Bisht GS, Rawat DS et al. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a. FEBS J. 2012; 279 (20): 3776-3790.
Olli S, Nagaraj R, Motukupally SR. A hybrid cationic peptide composed of human beta-defensin-1 and humanized theta-defensin sequences exhibits salt-resistant antimicrobial activity. Antimicrob Agents Chemother. 2015; 59 (1): 217-225.
Lu XM, Jin XB, Zhu JY et al. Expression of the antimicrobial peptide cecropin fused with human lysozyme in Escherichia coli. Appl Microbiol Biotechnol. 2010; 87 (6): 2169-2176.
Lohan S, Bisht GS. Recent approaches in design of peptidomimetics for antimicrobial drug discovery research. Mini Rev Med Chem. 2013; 13 (7): 1073-1088.
Mendez-Samperio P. Peptidomimetics as a new generation of antimicrobial agents: current progress. Infect Drug Resist. 2014; 7: 229-237.
Avan I, Hall CD, Katritzky AR. Peptidomimetics via modifications of amino acids and peptide bonds. Chem Soc Rev. 2014; 43 (10): 3575-3594.
Niu Y, Wu H, Li Y et al. AApeptides as a new class of antimicrobial agents. Org Biomol Chem. 2013; 11 (26): 4283-4290.
Li L, He J, Eckert R et al. Design and characterization of an acid-activated antimicrobial peptide. Chem Biol Drug Des. 2010; 75 (1): 127-132.
Song J, Zhang W, Kai M et al. Design of an acid-activated antimicrobial peptide for tumor therapy. Mol Pharm. 2013; 10 (8): 2934-2941.
Fernebro J. Fighting bacterial infections-future treatment options. Drug Resist Updat. 2011; 14 (2): 125-139.
Settanni L, Corsetti A. Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol. 2008; 121 (2): 123-138.
Midura-Nowaczek K, Markowska A. Antimicrobial peptides and their analogs: searching for new potential therapeutics. Perspect Medicin Chem. 2014; 6: 73-80.
Velden WJ, van Iersel TM, Blijlevens NM et al. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Med. 2009; 7: 44.
Mickels N, McManus C, Massaro J et al. Clinical and microbial evaluation of a histatin-containing mouthrinse in humans with experimental gingivitis. J Clin Periodontol. 2001; 28 (5): 404-410.
Paquette DW, Simpson DM, Friden P et al. Safety and clinical effects of topical histatin gels in humans with experimental gingivitis. J Clin Periodontol. 2002; 29 (12): 1051-1058.
Levin M, Quint PA, Goldstein B et al. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. rBPI21 Meningococcal Sepsis Study Group. Lancet. 2000; 356 (9234): 961-967.
Domingues MM, Santos NC, Castanho MA. Antimicrobial peptide rBPI21: a translational overview from bench to clinical studies. Curr Protein Pept Sci. 2012; 13 (7): 611-619.
Lipsky BA, Holroyd KJ, Zasloff M. Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis. 2008; 47 (12): 1537-1545.
Melo MN, Dugourd D, Castanho MA. Omiganan pentahydrochloride in the front line of clinical applications of antimicrobial peptides. Recent Pat Antiinfect Drug Discov. 2006; 1 (2): 201-207.
Nilsson AC, Janson H, Wold H et al. LTX-109 is a novel agent for nasal decolonization of methicillin-resistant and -sensitive Staphylococcus aureus. Antimicrob Agents Chemother. 2015; 59 (1): 145-151.