2016, Número 2
<< Anterior Siguiente >>
Investigación en Discapacidad 2016; 5 (2)
Diagnóstico molecular para la detección de metapneumovirus humano a partir de aislados virales en pacientes pediátricos con infección respiratoria aguda
Cerezo LG, Zárate CK, Alpuche-Lazcano S, Cabello C, Tato P, Tirado R
Idioma: Español
Referencias bibliográficas: 33
Paginas: 88-95
Archivo PDF: 475.17 Kb.
RESUMEN
Actualmente no se conoce en México la epidemiología de metapneumovirus humano, por lo que se implementó una metodología molecular para detectar y diagnosticar metapneumovirus humano. A partir de un total de 118 pacientes en edad pediátrica con infección respiratoria aguda, se tomaron muestras clínicas, de las cuales se obtuvieron aislados virales que se clasificaron en fusogénicos y no fusogénicos en función de su capacidad de inducir o no la formación de sincitios. Posteriormente, los aislados virales se sometieron a detección de metapneumovirus humano por inmunofluorescencia directa y se analizaron por RT-PCR con oligonucleótidos específicos para la amplificación de los genes N (nucleocápside) y/o L (RNA polimerasa viral). Los resultados obtenidos demostraron que mediante RT-PCR con nuestro diseño de oligonucleótidos identificamos como metapneumovirus humano positivos el 100% de los aislados virales metapneumovirus humano positivos por inmunofluorescencia directa (42/118). Cabe destacar que con esta metodología se detectaron siete muestras hRSV positivas mediante RT-PCR a partir del grupo de 17 muestras metapneumovirus humano negativas por inmunofluorescencia directa, lo cual pone de manifiesto la mayor sensibilidad de nuestra metodología.
REFERENCIAS (EN ESTE ARTÍCULO)
Papenburg J, Boivin G. The distinguishing features of human metapneumovirus and respiratory syncytial virus. Rev Med Virol. 2010; 20 (4): 245-260.
Abara S. Metapneumovirus humano: un nuevo agente en IRA alta y baja. Neumol Pediatr. 2006; 1 (1): 11-13.
Esper F, Boucher D, Weibel C, Martinello RA, Kahn JS. Human metapneumovirus infection in the United States: clinical manifestations associated with a newly emerging respiratory infection in children. Pediatrics. 2003; 111 (6 Pt 1): 1407-1410.
Maggi F, Pifferi M, Vatteroni M, Fornai C, Tempestini E, Anzilotti S et al. Human metapneumovirus associated with respiratory tract infections in a 3-year study of nasal swabs from infants in Italy. J Clin Microbiol. 2003; 41 (7): 2987-2991.
Viazov S, Ratjen F, Scheidhauer R, Fiedler M, Roggendorf M. High prevalence of human metapneumovirus infection in young children and genetic heterogeneity of the viral isolates. J Clin Microbiol. 2003; 41 (7): 3043-3045.
Noyola DE, Alpuche-Solís AG, Herrera-Díaz A, Soria-Guerra RE, Sánchez-Alvarado J, López-Revilla R. Human metapneumovirus infections in Mexico: epidemiological and clinical characteristics. J Med Microbiol. 2005; 54 (Pt 10): 969-974.
Ebihara T, Endo R, Kikuta H, Ishiguro N, Ishiko H, Hara M et al. Human metapneumovirus infection in Japanese children. J Clin Microbiol. 2004; 42 (1): 126-132.
Van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001; 7 (6): 719-724.
Huang CG, Tsao KC, Lin TY, Huang YC, Lee LA, Chen TH et al. Estimates of individuals exposed to human metapneumovirus in a community-based Taiwanese population in 1999. Arch Virol. 2010; 155 (3): 343-350.
Panda S, Mohakud NK, Pena L, Kumar S. Human metapneumovirus: review of an important respiratory pathogen. Int J Infect Dis. 2014; 25: 45-52.
Samransamruajkit R, Thanasugarn W, Prapphal N, Theamboonlers A, Poovorawan Y. Human metapneumovirus in infants and young children in Thailand with lower respiratory tract infections; molecular characteristics and clinical presentations. J Infect. 2006; 52 (4): 254-263.
Piyaratna R, Tollefson SJ, Williams JV. Genomic analysis of four human metapneumovirus prototypes. Virus Res. 2011; 160 (1-2): 200-205.
Stangegaard M, Hufva IH, Dufva M. Reverse transcription using random pentadecamer primers increases yield and quality of resulting cDNA. Bio Techniques. 2006; 40 (5): 649-657.
Kish L. Survey sampling. New York: John Wiley & Sons; 1965.
Sidhu MS, Menonna JP, Cook SD, Dowling PC, Udem SA. Canine distemper virus L gene: sequence and comparison with related viruses. Virology. 1993; 193 (1): 50-65.
Dutch RE, Hagglund RN, Nagel MA, Paterson RG, Lamb RA. Paramyxovirus fusion (F) protein: a conformational change on cleavage activation. Virology. 2001; 281 (1): 138-150.
Michalsk W, Crameri G, Wang Lin-Fa, Shiell BJ, Eaton B. The cleavage activation and sites of glycosylation in the fusion protein of Hendra virus. Virus Res 2000; 69: 83–93.
Gardner AE, Dutch RE. A conserved region in the F(2) subunit of paramyxovirus fusion proteins is involved in fusion regulation. J Virol. 2007; 81 (15): 8303-8314.
Schowalter RM, Chang A, Robach JG, Buchholz UJ, Dutch RE. Low-pH triggering of human metapneumovirus fusion: essential residues and importance in entry. J Virol. 2009; 83 (3): 1511-1522.
Lindquist SW, Darnule A, Istas A, Demmler GJ. Parainfluenza virus type 4 infections in pediatric patients. Pediatr Infect Dis J. 1997; 16 (1): 34-38.
Chaipan C, Kobasa D, Bertram S, Glowacka I, Steffen I, Tsegaye TS et al. Proteolytic activation of the 1918 influenza virus hemagglutinin. J Virol. 2009; 83 (7): 3200-3211.
Schickli JH, Kaur J, Ulbrandt N, Spaete RR, Tang RS. An S101P substitution in the putative cleavage motif of the human metapneumovirus fusion protein is a major determinant for trypsin-independent growth in vero cells and does not alter tissue tropism in hamsters. J Virol. 2005; 79 (16): 10678-10689.
Biacchesi S, Pham QN, Skiadopoulos MH, Murphy BR, Collins PL, Buchholz UJ. Modification of the trypsin-dependent cleavage activation site of the human metapneumovirus fusion protein to be trypsin independent does not increase replication or spread in rodents or nonhuman primates. J Virol. 2006; 80 (12): 5798-5806.
Lawlor HA, Schickli JH, Tang RS. A single amino acid in the F2 subunit of respiratory syncytial virus fusion protein alters growth and fusogenicity. J Gen Virol. 2013; 94 (Pt 12): 2627-2635.
Rodríguez-Auad JP, Nava-Frías M, Casasola-Flores J, Johnson KM, Nava-Ruiz A, Pérez-Robles V et al. The epidemiology and clinical characteristics of respiratory syncytial virus infection in children at a public pediatric referral hospital in Mexico. Int J Infect Dis. 2012; 16 (7): e508-e513.
Bezerra PG, Britto MC, Correia JB, Duarte Mdo C, Fonceca AM, Rose K et al. Viral and atypical bacterial detection in acute respiratory infection in children under five years. PLoS One. 2011; 6 (4): e18928.
Martínez P, Cordero J, Valverde C, Unanue N, Dalmazzo R, Piemonte P et al. Co-infección viral respiratoria en niños hospitalizados por infección respiratoria aguda y su impacto en la gravedad clínica. Rev Chil Infect. 2012; 29 (2): 169-174.
Reina J, Ferrés F, Mena A, Figuerola J, Alcoceba E. Características clínicas y epidemiológicas de las infecciones respiratorias causadas por el metapneumovirus humano en pacientes pediátricos. Enferm Infecc Microbiol Clin. 2008; 26 (2): 72-76.
Wolf DG, Greenberg D, Kalkstein D, Shemer-Avni Y, Givon-Lavi N, Saleh N et al. Comparison of human metapneumovirus, respiratory syncytial virus and influenza A virus lower respiratory tract infections in hospitalized young children. Pediatr Infect Dis J. 2006; 25 (4): 320-324.
Drews AL, Atmar RL, Glezen WP, Baxter BD, Piedra PA, Greenberg SB. Dual respiratory virus infections. Clin Infect Dis. 1997; 25 (6): 1421-1429.
Schildgen V, van den Hoogen B, Fouchier R, Tripp RA, Alvarez R, Manoha C et al. Human metapneumovirus: lessons learned over the first decade. Clin Microbiol Rev. 2011; 24 (4): 734-754.
Semple MG, Cowell A, Dove W, Greensill J, McNamara PS, Halfhide C et al. Dual infection of infants by human metapneumovirus and human respiratory syncytial virus is strongly associated with severe bronchiolitis. J Infect Dis. 2005; 191 (3): 382-386.
Cathomen T, Mrkic B, Spehner D, Drillien R, Naef R, Pavlovic J et al. A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J. 1998; 17 (14): 3899-3908.