2015, Number 4
<< Back Next >>
Rev Cubana Estomatol 2015; 52 (4)
Effect of the main materials used in dental practice against the formation of bacterial dental plaque
Chaple GAM
Language: Spanish
References: 39
Page: 32-38
PDF size: 220.57 Kb.
ABSTRACT
Introduction: bacterial dental plaque and biofilms are formed in hard and soft dental tissue alike. They are the main cause of dental caries and periodontal disease in the patients affected.
Objective: identify the effect of the materials most commonly used in dental practice against the formation of bacterial dental plaque.
Methods: a bibliographic review was conducted about the antibiofilm properties of the main materials used in dental practice. The inclusion criteria were the following: inhibitory properties, formation and/or development of bacterial dental plaque on the surface of dental cements used in endodontics, commonly used dental cements such as zinc oxide, polycarboxylate and glass ionomer, permanent restoration materials such as composite resins and silver amalgam. Data were obtained from the search engines and platforms SciELO, HINARI and MEDLINE. A review was conducted of 21 high impact journals dealing with the topic. About 899 papers were obtained, of which only 39 were included in the study. 52.6 % of the papers had been published in the last five years.
Integration of results: a description is provided of the effect of several dental cements, materials used in endodontics and permanent restoration materials against the formation of bacterial dental plaque.
Conclusions: according to the bibliographic review conducted, the materials that most commonly enable the formation of bacterial dental plaque are composite resins, followed by silver amalgam. Cements used in endodontic treatment were found to have antifilm properties, whereas cements with zinc compounds, high pH and fluoride releasing capacity exhibited optimal inhibitory and antifilm properties.
REFERENCES
Li L, Finnegan MB, Özkan S, Kim Y, Lillehoj PB, Ho CM, et al. In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces. Mol Oral Microbiol. 2010 Dec;25(6):384-90. doi: 10.1111/j.2041-1014.2010.00586.x.
Baer J, Maki JS. In vitro evaluation of the antimicrobial effect of three endodontic sealers mixed with amoxicillin. J Endod. 2010;36(7):1170-3
Nasco-Hidalgo N, Gispert-Abreu E, Roche-Martínez A, Alfaro-Mon M, Pupo-Tiguero R. Factores de riesgo asociados a lesiones incipientes de caries dental en niños. Rev Cub Estomatología [Internet]. 2013 [citado 2015 Feb 19];50(2):[aprox 1 página]. Disponible en: http://www.revestomatologia.sld.cu/index.php/est/article/view/190
Zhejun W, Shen Y, Haapasalo M. Dental materials with antibiofilm properties. Dent Mater. 2014;30(2):e1-e16
Moons P, Michiels CW, Aertsen A. Bacterial interactions in biofilms. Crit Rev Microbiol. 2009;35(3):157-68.
Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res. 2010;89(7):657-65.
Beyth N, Bahir R, Matalon S, Domb AJ, Weiss EI. Streptococcus mutans biofilm changes surface-topography of resin composites. Dent Mater. 2008;24(6):732-6.
Marsh PD. Controlling the oral biofilm with antimicrobials. J Dent. 2010 Jun;38 Suppl 1:S11-S15. doi: 10.1016/S0300-5712(10)70005-1.
Shen Y, Stojicic S, Haapasalo M. Bacterial viability in starved and revitalized biofilms: comparison of viability staining and direct culture. J Endod. 2010;36(11):1820-3.
Zijnge V, van Leeuwen MB, Degener JE, Abbas F, Thurnheer T, Gmur R, et al. Oral biofilm architecture on natural teeth. PLoS ONE. 2010;5(2):e9321
Karantakis P, Helvatjoglou-Antoniades M, Theodoridou-Pahini S, Papadogiannis Y. Fluoride release from three glass ionomers, a compomer, and a composite resin in water, artificial saliva, and lactic acid. Oper Dent. 2000;25(1):20-5.
Vercruysse CW, De Maeyer EA, Verbeeck RM. Fluoride release of polyacid-modified composite resins with and without bonding agents. Dent Mater. 2001;17(4):354-8.
Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007;23(3):343-62.
Neelakantan P, Rao CV, Indramohan J. Bacteriology of deep carious lesions underneath amalgam restorations with different pulp-capping materials—an in vivo analysis. J Appl Oral Sci. 2012;20(2):139-45.
De Giglio E, Cafagna D, Cometa S, Allegretta A, Pedico A, Giannossa LC. An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization. Anal Bioanal Chem. 2013;405(2-3):805-16.
Li F, Chai ZG, Sun MN, Wang F, Ma S, Zhang L. Anti-biofilm effect of dental adhesive with cationic monomer. J Dent Res. 2009;88(4):372-6.
Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M. Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res. 2007;86(8):754-57.
Zhang H, Shen Y, Ruse ND, Haapasalo M. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis. J Endod. 2009;35(7):1051-5.
Liao J, Anchun M, Zhu Z, Quan Y. Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. Int J Nanomed. 2010;5:337-42.
He G, Pearce EI, Sissons CH. Inhibitory effect of ZnCl(2) on glycolysis in human oral microbes. Arch Oral Biol. 2002;47(2):117-29.
Zehnder M, Waltimo T, Sener B, Soderling E. Dentin enhances the effectiveness of bioactive glass S53P4 against a strain of Enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(4):530-5.
Carlen A, Nikdel K, Wennerberg A, Holmberg K, Olsson J. Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials. 2001;22(5):481-7.
Fuss Z, Charniaque O, Pilo R, Weiss E. Effect of various mixing ratios on antibacterial properties and hardness of endodontic sealers. J Endod. 2000;26(9):519-22.
Heyder M, Kranz S, Volpel A, Pfister W, Watts DC, Jandt KD. Antibacterial effect of different root canal sealers on three bacterial species. Dent Mater. 2013;29(5):542-9.
Willershausen I, Callaway A, Briseño B, Willershausen B. In vitro analysis of the cytotoxicity and the antimicrobial effect of four endodontic sealers. Head Face Med. 2011 Aug 10;7:15. doi: 10.1186/1746-160X-7-15.
Baer J, Maki JS. In vitro evaluation of the antimicrobial effect of three endodontic sealers mixed with amoxicillin. J Endod. 2010;36(7):170-3.
Ma J, Shen Y, Stojicic S, Haapasalo M. Biocompatibility of two novel root repair materials. J Endod. 2011;37(6):793-8.
Lyttle HA, Bowden GH. The level of mercury in human dental plaque and interaction in vitro between biofilms of Streptococcus mutans and dental amalgam. J Dent Res. 1993;72(9):1320-4.
Ready D, Qureshi F, Bedi R, Mullany P, Wilson M. Oral bacteria resistant to mercury and to antibiotics are present in children with no previous exposure to amalgam restorative materials. FEMS Microbiol Lett. 2003;223(1):107-11.
Auschill TM, Arweiler NB, Brecx M, Reich E, Sculean A, Netuschil L. The effect of dental restorative materials on dental biofilm. Eur J Oral Sci. 2002;110(1):48-53.
Sawant SN, Selvaraj V, Prabhawathi V, Doble M. Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. PLoS ONE. 2013;8(5):e63311
Beyth N, Domb AJ, Weiss EI. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J Dent. 2007;35(3):201-6.
Ionescu A, Wutscher E, Brambilla E, Schneider-Feyrer S, Giessibl FJ, Hahnel S. Influence of surface properties of resin-based composites on in vitro Streptococcus mutans biofilm development. Eur J Oral Sci. 2012;120(5):458-65.
Ono M, Nikaido T, Ikeda M, Imai S, Hanada N, Tagami J. Surface properties of resin composite materials relative to biofilm formation. Dent Mater J. 2007;26(5):613-22.
Fan C, Chu L, Rawls HR, Norling BK, Cardenas HL, Whang K. Development of an antimicrobial resin—a pilot study. Dent Mater. 2011;27(4):322-8.
Pandit S, Kim GR, Lee MH, Jeon JG. Evaluation of Streptococcus mutans biofilms formed on fluoride releasing and non fluoride releasing resin composites. J Dent. 2011;39(11):780-7.
Burgers R, Schneider-Brachert W, Rosentritt M, Handel G, Hahnel S. Candida albicans adhesion to composite resin materials. Clin Oral Investig. 2009;13(3):293-9.
Kim JS, Shin DH. Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin. Restor Dent Endod. 2013;38(1):36-42.
Kim S, Song M, Roh BD, Park SH, Park JW. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid. Restor Dent Endod. 2013;38(1):65-72.