2003, Number 3
<< Back Next >>
Cir Cir 2003; 71 (3)
CTL immunotherapy in patients with cancer
Valdespino-Gómez VM , Rocha-Zavaleta L
Language: Spanish
References: 57
Page: 235-244
PDF size: 95.76 Kb.
ABSTRACT
Several experimental developments in the last 20 years have
hallmarked progress in understanding the cellular and molecular
basis of the immune response to cancer. Identification of 30 tumor
antigens associated from some expressed proteins in neoplasic cells
are used as targets of immune response cells. Multiple studies
have proved in vitro and in animal models that specific clones of
lymphocytes T CD4+ and CD8+ recognize the tumoral
immunogenic-oligopeptides and carry out the principal effecting
phase in anti-tumor response. Positive immunomodulation of
recognition and effecting phases have obtained objective anti-tumoral
response in these experimental models. Similar strategies have been
used in immunotherapy cancer patient clinical trails and have
demonstrated partial objective responses.
Current studies emphasize identification of new tumor
molecular-antigens, in understanding new tumor mechanisms enabled
to escape immunologic attack and in use of positive immunomodulation
in patients with non-advanced cancer.
Over the coming years, we will be surprised at the impact of this
type of anti-tumor treatment.
REFERENCES
Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998;396:643-649.
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2001; 100: 57-70.
Yang JC. Tumor immunology. In: Rich RR, editor. Clinical Immunology. 2th ed. London: Mosby; 2001.pp.100.1-100.15.
Chattopadhyay U. Tumor immunotherapy: developments and strategies. Immunol Today 1999;20:480-482.
Ockert D, Schmitz M, Hampl M, Rieber EP. Advances in cancer immunotherapy. Immunol Today 1999;20:63-65.
Rosenberg SA. Progress in human tumour immunology, immunotherapy. Nature 2001;411:380-384.
Todryk S. Roads that lead to tumor immunotherapy? Mod Asp Immunolobiol 2000; 1(3):114-118.
Moingeon P. Cancer vaccines. Vaccine 2001;19:1305-1326.
Goldman B. Cancer vaccines: finding the best way to train the immune system. JNCI 2002;94(20):1523-1526.
Rosenberg SA. Principles of cancer management: Biologic therapy. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer. Principles and practice of oncology. 6th ed. Philadelphia. PA, USA: Lippincott, Williams/Williams; 2001:307-333.
Rosenberg SA. Progress in the development of immunotherapy for the treatment of patients with cancer. J Intern Med 2001;250:462-475.
Rosenberg SA, Yang JC, Topalian SL, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998;4(3):321-327.
Smyth M, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2001;2(4):293-299.
Schreiber H. Tumor immunology. In: Paul WE, editor. Fundam Immunol, 4th ed. Philadelphia PA, USA: Lippincott-Raven;1999. pp.1237-1270.
Hirschmann-Jax C, Takahashi S, Brenner KM. Cancer vaccines. Hematol Oncol Clin N Amer 2001;15-4:741-773.
Parmiani G, Castelli C, Anichini A, et al. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? JNCI 2002;94(11):805-818.
Banchereau J, Schuler TB, Palucka AK, Schuler G. Dendritic cells as vectors for therapy. Cell 2001;106:271-274.
Dudley ME, Wunderllich JR, Rosenberg SA, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002;298:850-854.
Seiter S, Marincola M. The multiple ways to tumor tolerance. Mod Asp Immunobiol 2000;1(3):121-124.
Corbi AL, Relloso M, Puig KA. Células dendríticas: biología, funciones efectoras y utilidad terapéutica anti-tumoral. Hematol Citocin Inmunoter Ter Cel 2001;4(1):45-71.
Almand B, Resser JR, Lindman B, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 2000;6:1755-1766.
Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of dendritic cell activation: impact on priming of Th1, Th2 and nonpolarized cells. Nat Immunol 2000;1(4):311-316.
Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell 2001;106:263-266.
Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system? Semin Immunol 1996;8:271-280.
Pettit SJ, Seymour K, Kirby JA, et al. Immune selection in neoplasia: towards a microevolutionary model of cancer development. Br J Cancer 2000;82:1900-1906.
Marincola FM, Jaffe EM, Ferrone S, et al. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000;74:181-273.
Garrido F, Cabrera T, Stern PL, et al. Natural history of HLA expression during tumour development. Immunol Today 1993;14:491-499.
Keating PJ, Cromme FV, Stern PL, et al. Frequency of downregulation of individual HLA-A and HLA-B alleles in cervical carcinomas in relation to TAP-1 expression. Br J Cancer 1995;72:405-411.
Solana R, Romero J, Alonso C, et al. MHC class I antigen expression is inversely related with tumor malignancy and ras oncogene product (p21ras) levels in human breast tumors. Invasion Metastasis 1992;12:210-217.
Vora AR, Rodgers S, Murray AK, et al. An immunohistochemical study of altered immunomodulatory molecule expression in head and neck squamous cell carcinoma. Br J Cancer 1997;76:836-844.
Ishido S, Wang C, Jung JU, et al . Downregulation of major histocompatibility complex class I molecules by Kaposi’s sarcoma-associated herpes virus K3 and K5 proteins. J Virol 2000;74:5300-5309.
Cromme FV, Van Bommel PFJ, Meijer C, et al. Differences in MHC and TAP-1 expression in cervical cancer lymph node metastasis as compared with the primary tumours. Br J Cancer 1994;69:1176-1181.
Johnsen AK, Templeton DJ, Harding CV, et al. Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J Immunol 1999;163:4224-4231.
Urosevic M, Wilers J, Dummer R, et al. HLA-G protein up-regulation in primary cutaneous lymphomas is associated with interleukin-10 expression in large T-cell lymphomas and indolent B-cell lymphomas. Blood 2002;99: 609-617.
Chouaib S, Asselin-Paturel C, Blay JY, et al. The host-tumor immune conflict: from immunosuppression to resistance and destruction. Immunol Today 1997;18:493-497.
Eder IE, Stenzl A, Klocker H, et al. Expression of transforming growth factors beta 1, beta 2 and beta 3 in human bladder carcinomas. Br J Cancer 1997;75:1753-1760.
Morisaki T, Katano M, Torisu M, et al. Immunosuppressive cytokines (IL-10, TGF-beta) genes expression in human gastric carcinoma tissues. J Surg Oncol 1996;63:234-239.
Matsuda M, Salazar F, Kiessling R, et al. Interleukin-10 pretreatment protects target cells from tumor-specific and allo-specific cytotoxic T cells and down regulates HLA class I expression. J Exp Med 1994;180:2371-2376.
Ju ST, Panka DJ, Marshak-Rothstein A, et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 1995;373:444-448.
Hahne M, Rimoldi D, Tschopp J, et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996;274:1363-1366.
Saas P, Walker PR, Dietrich PY, et al. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest 1997;99:1173-1178.
Mullauer L, Mosberger I, Chott A. Fas ligand expression in nodal non-Hodgkin’s lymphoma. Mod Pathol 1998;11:369-375.
Strand S, Hofmann WJ, Galle PR, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells-a mechanism of immune evasion?. Nat Med 1996;2:1361-1366.
Niehans GA, Brunner T, Kratzke RA, et al. Human lung carcinomas express Fas lignad. Cancer Res 1997;57:1007-1012.
Real LM, Jiménez P, Ruíz-Cabello F, et al. Multiple mechanisms of immune evasion can coexist in melanoma tumor cell lines derived form the same patient. Cancer Immunol Immunother 2001;49:621-628.
Whiteside TL. Monitoring of antigen-specific cytolytic T lymphocytes in cancer patients receiving immunotherapy. Clin Diag Lab Immunol 2000;7:327-332.
Dunbar PR, Smith CL, Cerundolo V, et al. A shift in the phenotype of melan-A-specific CTL identifies melanoma patients with an active tumor-specific immune response. J Immunol 2000;165:6644-6652.
Baxevanis CN, Voutsas IF, Papamichail M, et al. Tumor-specific CD4+ T lymphocytes from cancer patients are required for optimal induction of cytotoxic T cells against the autologous tumor. J Immunol 2000;164:3902-3912.
Smyth MJ, Godfrey DI. NKT cell as tumor immunity-a double-edged sword. Nat Immunol 2000;1,6:459-460.
Wang E, Miller LD, Marincola FM, et al. Prospective molecular profiling of melanoma metastases suggests classifiers of immune responsiveness. Cancer Res 2002;62:3581-3586.
Zeng G, Li Y, Robbins PF, et al. Generation of NY-ESO-I-specific CD4+ and CD8+ T cells by a single peptide with dual MHC class I and class II specificities: a new strategy for vaccine design. Cancer Res 2002;62:3630-3635.
Schultze JL, Vonderheide RH. From cancer genomics to cancer immunotheraphy: toward second-generation tumor antigens. Trends Immunol 2001;22,9:516-523.
Monzavi KB, Keiber ET. Current concepts in cancer vaccine strategies. Biotechniques 2001;30:170-189.
Weinschenk T, Gouttefangeas C, Rammensee HG, et al. Integrated functional genomics approach for the designs of patient-individual antitumor vaccines. Cancer Res 2002;62:5818-5827.
van’t Veer LJ, De Jong D. The microarray way to tailored cancer treatment. Nat Med 2002;8(1):13-14.
van’t Veer LJ, Dai H, Friend SH, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530-536
Foucar K. Application of tissue microarrays to hematolymphoid specimens: the minimalist perspective. Hum Pathol 2002;33:951-952.