2015, Number 3
<< Back Next >>
Rev Cubana Plant Med 2015; 20 (3)
Antioxidant activity, total phenolic content and cytotoxicity of polar extracts from colombian antidiabetic plants
Rivas MKE, Muñoz DL, Pino BCN, Balcázar MN
Language: Spanish
References: 32
Page: 277-289
PDF size: 225.18 Kb.
ABSTRACT
Introduction: the traditional use of plants as antidiabetic herbal medicine is common practice in the Colombian Pacific,
A. altilis,
B. picta,
S. malaccensis,
P. microphylla y
P. quadrangularis are five species that are widely recognized as natural antidiabetic regionally, without the existence experimental evidence to validate that assessment.
Objective: evaluate the total content of phenolic compounds, potential antioxidant
and cytotoxic activity of polar extracts prepared from five plant species used as natural antidiabetic Colombian traditional medicine.
Methods: extracts of leaves (leaves and stems for
P. microphylla) were obtained by maceration in 96% ethanol or distilled H
2O as appropriate. The antioxidant activity was evaluated by spectrophotometric assays DPPH 2, 2-diphenyl-1-picrilhidracil and ABTS 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid),
while the total content of phenolic molecules is determined by the Folin-Ciocalteu method. Furthermore, the cytotoxic activity was tested in the Hep-G2 cell line
(human hepatocarcinoma) and C
2C
12 (mouse Miocarcinoma).
Results: the ethanol extracts of
A. altilis,
S. malaccensis and
B. picta, showed the best antioxidant behavior in both methods, with properties comparable to vitamins E and C. Likewise, as to the toxic properties of the extracts
A. altilis reported the highest percentage of mortality in C
2C
12 cells with an LC
50 value of 24,9 ± 0,67 mg/mL, comparable to the cytotoxicity exerted by amphotericin B, while in HEP-G2
cells the major toxic effect was governed by
P. quadrangularis with LC
50 of 36,4 ±
5,79mg/mL.
Conclusions: the potential antioxidant evidenced by the ethanol and aqueous extracts of
A. altilis,
S. malaccensis,
B. picta,
P. quadrangularis and
P. microphylla in 62.39% correlated with the total content of phenolic molecules. All extracts showed fifty cytotoxic activitiesat concentrations greater than their antioxidant
activityrange.
REFERENCES
Bernal HY, García H, Quevedo F. Pautas para el conocimiento, conservación y uso sostenible de las plantas medicinales nativas en Colombia; 2011. p. 236.
Elekofehinti OO. Saponins: Anti diabetic principles from medicinal plants – A review. Pathophysiology. 2015;1:1–9.
Gautam B, Vadivel V, Stuetz W, Biesalski HK. Bioactive compounds extracted from Indian wild legume seeds: antioxidant and type II diabetes-related enzyme inhibition properties. Int J Food Sci Nutr. 2012;63(2):242–5.
Ospina LF, Pinzón R. plantas antidiabéticas colombianas. Rev Colomb ciencias Quim. 1995;23:1–14.
Torres F, Paz G, Zapata M. Las plantas pueden ser fuente de compuestos antidiabéticos que aún no han sido científicamente validados. Ciencia & Salud. 2013;1(3):11–8.
Joseph B, Jini D. Insisting into the role of antioxidant enzymes for salt tolerance in plants. Int J Bot. 2010;6(4):456–64.
Gill NS, Dhawan S, Jain A, Arora R, Bali M. Antioxidant and anti-ulcerogenic activity of wild Punica granatum ethanolic seed extract. J Med Plant. 2012;6(1):47–55.
Mahajan M, Kumar S. Effect of Quercetin and Epicatechin on the transcript Expression and Activity of Antioxidant Enzymes in Tobacco Seedlings. American J Biochem Mol Biol. 2013;3(1):81–90.
Maldonado O, Nahúm E, Guapillo M, Ceballos G. Radicales libres y su papel en las enfermedades crónico degenerativas. Rev Médica Univ Veracruzana. 2010 Jul- Dic:32–9.
Siddesha JM, Angaswamy N, Vishwanath BS. Phytochemical screening and evaluation of in vitro angiotensin-converting enzyme inhibitory activity of Artocarpus altilis leaf. Nat Prod Res. 2011;25(20):1931–40.
Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol. 1995;28(1):25–30.
Bounatirou S, Smiti S, Miguel MG, Faleiro L, Rejeb MN, Neffati M, et al. Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem. 2007;105(1):146–55.
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice C, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol. 1999 May;26(9–10):1231–7.
Erdemoglu N, Turan NN, Akkol EK, Sener B, Abacıoglu N. Estimation of antiinflammatory, antinociceptive and antioxidant activities on Arctium minus (Hill) Bernh. ssp. minus. J Ethnopharmacol. 2009 Jan 21;121(2):318–23.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1–2):55–63.
Prior RL, Cao G, Martin A, Sofic E, McEwen J, O’Brien C, et al. Antioxidant Capacity As Influenced by Total Phenolic and Anthocyanin Content, Maturity, and Variety of Vaccinium Species. J Agric Food Chem. 1998;46(7):2686–93.
Ramirez C, Andersen M, Gardner PT, Morrice PC, Wood SG, Duthie SJ, et al. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic Biol Med. 2001;31(9):1033–7.
Miller NJ, Rice-Evans CA. Factors influencing the antioxidant activity determined by the ABTS.+ radical cation assay. Free Radic Res. 1997;26(3):195–9.
Wang Y, Xu K, Lin L, Pan Y, Zheng X. Geranyl flavonoids from the leaves of Artocarpus altilis. Phytochemistry. 2007;68(9):1300–6.
Lin CN, Lu CM, Lin HC, Fang SC, Shieh BJ, Hsu MF, et al. Novel antiplatelet constituents from formosan moraceous plants. J Nat Prod. 1996;59(9):834–8.
Lu YH, Lin CN, Ko HH, Yang SZ, Tsao LT, Wang JP, et al. Two Novel and Anti- Inflammatory Constituents of Artocarpus rigida. Helv Chim Acta. 2002;85(6):1626–32.
Fukai T, Satoh K, Nomura T, Sakagami H. Antinephritis and radical scavenging activity of prenylflavonoids. Fitoterapia. 2003;74(7–8):720–4.
Savitha RC, Padmavathy S, Sundhararajan A. Invitro antioxidant activities on leaf extracts of syzygium malaccense (L.) merr and perry. Anc Sci Life. 2011;30(4):110–3.
Pino Benítez N. Plantas útiles del Departamento del Chocó. Parte 1, Extractos. 1st ed. Medellín-Colombia: Uryco Ltda; 2009. p. 312.
Cerón I, Higuita J, Cardona C. Capacidad antioxidante y contenido fenólico total de tres frutas cultivadas en la región andina. Vector 5. 2011;5(2010):17–26.
Bansal P, Paul P, Mudgal J, Nayak P, Thomas Pannakal S, Priyadarsini KI, et al. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Exp Toxicol Pathol. 2012;64(6):651–8.
Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey AK. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. Biomed Res Int. 2013 August;1:10.
Alade GO, Adebajo AC, Omobuwajo OR, Proksch P, Verspohl EJ. Quercetin, a minor constituent of the antihyperglycemic fraction of Bauhinia monandra leaf. J Diabetes. 2012;4:439–41.
Ren Y, Kardono BS, Riswan S, Chai H, Farnsworth NR, Soejarto DD, et al. Cytotoxic and NF-kappaB inhibitory constituents of Artocarpus rigida. J Nat Prod. 2010;73(5):949–55.
Su D, Cheng Y, Liu M, Liu D, Cui H, Zhang B, et al. Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS One. 2013;8(1):54-50.
Augusta IM, Resende JM, Borges SV, Cristina M, Maia A, Antonieta M, et al. Caracterização física e química da casca e polpa de jambo vermelho (Syzygium malaccensis, (L.) Merryl & Perry). Ciència e Tecnol Aliment. 2010;30(4):928–32.
Asadujjaman M, Mishuk AU, Hossain MA, Karmakar UK. Medicinal potential of Passiflora foetida L. plant extracts: biological and pharmacological activities. J Integr Med. 2014;12(2):121–6.