2015, Number 2
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2015; 18 (2)
Nuclear receptors: from the nucleus to the cytoplasm
Ortega-Domínguez B, Herrera-Ramírez M, Tecalco-Cruz AC
Language: Spanish
References: 63
Page: 131-143
PDF size: 1177.53 Kb.
ABSTRACT
Nuclear receptors (RNs) are a family of transcription factors activated by ligand which regulate the
expression of many genes dependent on the cellular type and context. The subcellular localization of
RNs is highly dynamic and affects its function as transcriptional factors. In the presence of its specific
ligand, the RNs increase in the nucleus to modulate the expression of their target genes. Thus, the exit
from nucleus to cytoplasm of RNs decreases its nuclear accumulation and its transcriptional activity.
Therefore, nuclear export is an important mechanism regulating the activity of RNs. Despite its importance,
the process of nuclear export of RNs has not been fully studied. However, the studies made so far suggest
the involvement of the CRM–1 and Calreticulin (CRT) proteins as mediators of this process. In this review,
we highlight the nuclear export as a regulatory mechanism to control the functions of RNs and the
structural and functional characteristics of CRM–1 and CRT exportins are discussed.
REFERENCES
Germain, P., et al. Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58(4), 685-704 (2006).
Sonoda, J., Pei, L. & Evans, R.M. Nuclear receptors: decoding metabolic disease. FEBS Lett. 582(1), 2-9 (2008).
Lonard, D.M. & O’Malley, B.W. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat. Rev. Endocrinol. 8(10), 598-604 (2012).
Roshan-Moniri, M., et al. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers. Cancer Treat. Rev. 40(10), 1137-1152 (2014).
Polvani, S., et al. Nuclear receptors and pathogenesis of pancreatic cancer. World J. Gastroenterol. 20(34), 12062-12081 (2014).
Pawlak, M., Lefebvre, P. & Staels, B. General molecular biology and architecture of nuclear receptors. Curr. Top. Med. Chem. 12(6), 486-504 (2012).
Tata, J.R. Signalling through nuclear receptors. Nat. Rev. Mol. Cell Biol. 3(9), 702-710 (2002).
Burris, T.P., et al. Nuclear receptors and their selective pharmacologic modulators. Pharmacol. Rev. 65(2), 710-778 (2013).
Sever, R. & Glass, C.K. Signaling by nuclear receptors. Cold. Spring. Harb. Perspect. Biol. 5(3), a016709 (2013).
Wang, C., Liu, Y. & Cao, J.M. G protein-coupled receptors: extranuclear mediators for the non-genomic actions of steroids. Int. J. Mol. Sci. 15(9), 15412-15425.
Losel, R. & Wehling, M. Nongenomic actions of steroid hormones. Nat. Rev. Mol. Cell Biol. 4(1), 46-56 (2003).
Callige, M. & Richard-Foy, H. Ligand-induced estrogen receptor alpha degradation by the proteasome: new actors? Nucl. Recept. Signal. 4, e004 (2006).
Wei, X., Xu, H. & Kufe, D. MUC1 oncoprotein stabilizes and activates estrogen receptor alpha. Mol. Cell 21(2), 295-305 (2006).
Oh, Y. & Chung, K.C. Zinc finger protein 131 inhibits estrogen signaling by suppressing estrogen receptor alpha homodimerization. Biochem. Biophys. Res. Commun. 430(1), 400- 405 (2013).
Tyagi, R.K., et al. Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate. Mol. Endocrinol. 12(11), 1684-1695 (1998).
Katagiri, Y., et al. Modulation of retinoid signalling through NGF-induced nuclear export of NGFI-B. Nat. Cell. Biol. 2(7), 435-440 (2000).
Aranda, A. & Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev. 81(3), 1269-1304 (2001).
Wente, S.R. & Rout, M.P. The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol. 2(10), 562 (2010).
Chook, Y.M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11(6), 703-715 (2001).
Hutten, S. & Kehlenbach, R.H. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol. 17(4), 193-201 (2007).
Goldfarb, D.S., et al. Importin alpha: a multipurpose nucleartransport receptor. Trends Cell Biol. 14(9), 505-514 (2004).
Black, B.E., et al. DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr. Biol. 11(22), 1749- 1758 (2001).
Bagley, S., et al. The nuclear pore complex. J. Cell. Sci. 113 (Pt 22), 3885-3886 (2000).
Lombardi, M., et al. Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells. J. Cell. Biol. 182(2), 327-340 (2008).
Castoria, G., et al. Tyrosine phosphorylation of estradiol receptor by Src regulates its hormone-dependent nuclear export and cell cycle progression in breast cancer cells. Oncogene 31(46), 4868-4877 (2012).
Papac-Milicevic, N., et al. The interferon stimulated gene 12 inactivates vasculoprotective functions of NR4A nuclear receptors. Circ. Res. 110(8), e50-63 (2012).
Grespin, M.E., et al. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway. J. Biol. Chem. 283(37), 25576-25588 (2008).
Holaska, J.M., et al. Calreticulin Is a receptor for nuclear export. J. Cell. Biol. 152(1), 127-140 (2001).
Saito, N. & Matsuura, Y. A 2.1-A-resolution crystal structure of unliganded CRM1 reveals the mechanism of autoinhibition. J. Mol. Biol. 425(2), 350-364 (2013).
Petosa, C., et al. Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol. Cell. 16(5), 761-175 (2004).
Krause, K.H. & Michalak, M. Calreticulin. Cell 88(4), 439-443 (1997).
Michalak, M., Robert Parker, J.M. & Opas, M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium. 32(5-6), 269-278 (2002).
Michalak, M., et al. Calreticulin. Biochem. J. 285(Pt 3), 681-692 (1992).
Michalak, M., et al. Calreticulin: one protein, one gene, many functions. Biochem. J. 344(Pt 2), 281-292 (1999).
Lu, Y.C., Weng, W.C. & Lee, H. Functional Roles of Calreticulin in Cancer Biology. Biomed. Res. Int. 526524 (2015).
Stade, K., et al. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90(6), 1041-1050 (1997).
Gerace, L., Ottaviano, Y. & Kondor-Koch, C. Identification of a major polypeptide of the nuclear pore complex. J. Cell Biol. 95(3), 826-837 (1982).
Fornerod, M., et al. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J. 16(4), 807-816 (1997).
Siddiqui, N. & Borden, K.L. mRNA export and cancer. Wiley Interdiscip. Rev. RNA 3(1), 13-25 (2012).
MacLennan, D.H., Yip, C.C., Iles, G.H. & Seeman P. Isolation of sarcoplasmic reticulum proteins. Cold Spring Harb. Symp. Quant. Biol. 37, 469-477 (1972).
Fliegel, L., et al. Molecular cloning of the high affinity calciumbinding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 264(36), 21522-21528 (1989).
Ostwald, T.J. & MacLennan, D.H. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249(3), 974-979 (1974).
Waisman, D.M., Salimath, B.P. & Anderson, M.J. Isolation and Characterization of Cab-63, a Novel Calcium-Binding Protein. Journal of Biological Chemistry 260(3), 1652-1660 (1985).
Smith, M.J. & Koch, G.L. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J. 8(12), 3581-3586 (1989).
Mueller, C.F., et al. Differential phosphorylation of calreticulin affects AT1 receptor mRNA stability in VSMC. Biochem. Biophys. Res. Commun. 370(4), 669-674 (2008).
Nakamura, K., et al. Functional specialization of calreticulin domains. J. Cell Biol. 154(5), 961-972 (2001).
Villagómez, M., et al. Calreticulin and focal-contact-dependent adhesion. Biochem. Cell Biol. 87(4), 545-556 (2009).
Opas, M., et al. Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of nonmuscle cells. J. Cell Physiol. 149(1), 160-171 (1991).
Liu, J. & DeFranco, D.B. Protracted nuclear export of glucocorticoid receptor limits its turnover and does not require the exportin 1/CRM1-directed nuclear export pathway. Mol. Endocrinol. 14(1), 40-51 (1985).
Kudo, N., et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell. Res. 242(2), 540-547 (1998).
Nguyen, M.M., et al. Cytoplasmic localization of the androgen receptor is independent of calreticulin. Mol. Cell Endocrinol. 302(1), 65-72 (2009).
Senapedis, W.T., Baloglu, E. & Landesman, Y. Clinical translation of nuclear export inhibitors in cancer. Semin. Cancer Biol. 27, 74-86 (2014).
Gravina, G.L., et al. XPO1/CRM1-selective inhibitors of nuclear export (SINE) reduce tumor spreading and improve overall survival in preclinical models of prostate cancer (PCa). J. Hematol. Oncol. 7, 46 (2014).
Freedman, D.A. & Levine, A.J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell Biol. 18(12), 7288-7293 (1998).
Sheng, W., et al. Overexpression of calreticulin contributes to the development and progression of pancreatic cancer. J. Cell Physiol. 229(7), 887-897 (2014).
Lwin, Z.M., et al. Clinicopathological significance of calreticulin in breast invasive ductal carcinoma. Mod. Pathol. 23(12), 1559-1566 (2010).
Schutz, S.V., Cronauer, M.V. & Rinnab, L. Inhibition of glycogen synthase kinase-3beta promotes nuclear export of the androgen receptor through a CRM1-dependent mechanism in prostate cancer cell lines. J. Cell Biochem. 109(6), 1192-1200 (2010).
Kanwal, C., Li, H. & Lim, C.S. Model system to study classical nuclear export signals. AAPS PharmSci. 4(3), E18 (2002).
Burns, K., et al. Calreticulin: from Ca2+ binding to control of gene expression. Trends Cell Biol. 4(5), 152-154 (1994).
Sela-Brown, A., et al. Calreticulin inhibits vitamin D’s action on the PTH gene in vitro and may prevent vitamin D’s effect in vivo in hypocalcemic rats. Mol. Endocrinol. 12(8), 1193-1200 (1998).
Prufer, K. & Barsony, J. Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol. Endocrinol. 16(8), 1738-1751 (2002).
Umemoto, T. & Fujiki, Y. Ligand-dependent nucleo-cytoplasmic shuttling of peroxisome proliferator-activated receptors, PPARalpha and PPARgamma. Genes Cells 17(7), 576-596 (2012).
Gong, Y., et al. Nuclear export signal of androgen receptor (NESAR) regulation of androgen receptor level in human prostate cell lines via ubiquitination and proteasome-dependent degradation. Endocrinology 153(12), 5716-5725 (2012).