2015, Número 2
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2015; 18 (2)
Receptores nucleares: del núcleo al citoplasma
Ortega-Domínguez B, Herrera-Ramírez M, Tecalco-Cruz AC
Idioma: Español
Referencias bibliográficas: 63
Paginas: 131-143
Archivo PDF: 1177.53 Kb.
RESUMEN
Los receptores nucleares (RNs) constituyen una familia de factores transcripcionales activados por
ligando que regulan la expresión de un gran número de genes de forma dependiente del tipo y contexto
celular. La localización subcelular de los RNs es altamente dinámica y repercute sobre sus funciones
como factores transcripcionales. En presencia de su ligando específico, los RNs se acumulan en el núcleo
para modular la expresión de sus genes blanco. Por ende, la salida desde el núcleo a citoplasma de los
RNs disminuye su acumulación nuclear y abate su actividad transcripcional. Por lo tanto, la exportación
nuclear constituye un importante mecanismo de regulación de la actividad de los RNs. A pesar de su
importancia, el proceso de exportación nuclear de los RNs no ha sido completamente explorado, sin
embargo, los estudios que se tienen hasta ahora sugieren la participación de las proteínas CRM–1 y
la Calreticulina (CRT) como mediadoras de este proceso. En esta revisión se destaca la exportación
nuclear como un mecanismo regulador de las funciones de los RNs y se discuten las características
estructurales y funcionales de las exportinas CRM–1 y CRT.
REFERENCIAS (EN ESTE ARTÍCULO)
Germain, P., et al. Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58(4), 685-704 (2006).
Sonoda, J., Pei, L. & Evans, R.M. Nuclear receptors: decoding metabolic disease. FEBS Lett. 582(1), 2-9 (2008).
Lonard, D.M. & O’Malley, B.W. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat. Rev. Endocrinol. 8(10), 598-604 (2012).
Roshan-Moniri, M., et al. Orphan nuclear receptors as drug targets for the treatment of prostate and breast cancers. Cancer Treat. Rev. 40(10), 1137-1152 (2014).
Polvani, S., et al. Nuclear receptors and pathogenesis of pancreatic cancer. World J. Gastroenterol. 20(34), 12062-12081 (2014).
Pawlak, M., Lefebvre, P. & Staels, B. General molecular biology and architecture of nuclear receptors. Curr. Top. Med. Chem. 12(6), 486-504 (2012).
Tata, J.R. Signalling through nuclear receptors. Nat. Rev. Mol. Cell Biol. 3(9), 702-710 (2002).
Burris, T.P., et al. Nuclear receptors and their selective pharmacologic modulators. Pharmacol. Rev. 65(2), 710-778 (2013).
Sever, R. & Glass, C.K. Signaling by nuclear receptors. Cold. Spring. Harb. Perspect. Biol. 5(3), a016709 (2013).
Wang, C., Liu, Y. & Cao, J.M. G protein-coupled receptors: extranuclear mediators for the non-genomic actions of steroids. Int. J. Mol. Sci. 15(9), 15412-15425.
Losel, R. & Wehling, M. Nongenomic actions of steroid hormones. Nat. Rev. Mol. Cell Biol. 4(1), 46-56 (2003).
Callige, M. & Richard-Foy, H. Ligand-induced estrogen receptor alpha degradation by the proteasome: new actors? Nucl. Recept. Signal. 4, e004 (2006).
Wei, X., Xu, H. & Kufe, D. MUC1 oncoprotein stabilizes and activates estrogen receptor alpha. Mol. Cell 21(2), 295-305 (2006).
Oh, Y. & Chung, K.C. Zinc finger protein 131 inhibits estrogen signaling by suppressing estrogen receptor alpha homodimerization. Biochem. Biophys. Res. Commun. 430(1), 400- 405 (2013).
Tyagi, R.K., et al. Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate. Mol. Endocrinol. 12(11), 1684-1695 (1998).
Katagiri, Y., et al. Modulation of retinoid signalling through NGF-induced nuclear export of NGFI-B. Nat. Cell. Biol. 2(7), 435-440 (2000).
Aranda, A. & Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev. 81(3), 1269-1304 (2001).
Wente, S.R. & Rout, M.P. The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol. 2(10), 562 (2010).
Chook, Y.M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11(6), 703-715 (2001).
Hutten, S. & Kehlenbach, R.H. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol. 17(4), 193-201 (2007).
Goldfarb, D.S., et al. Importin alpha: a multipurpose nucleartransport receptor. Trends Cell Biol. 14(9), 505-514 (2004).
Black, B.E., et al. DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr. Biol. 11(22), 1749- 1758 (2001).
Bagley, S., et al. The nuclear pore complex. J. Cell. Sci. 113 (Pt 22), 3885-3886 (2000).
Lombardi, M., et al. Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells. J. Cell. Biol. 182(2), 327-340 (2008).
Castoria, G., et al. Tyrosine phosphorylation of estradiol receptor by Src regulates its hormone-dependent nuclear export and cell cycle progression in breast cancer cells. Oncogene 31(46), 4868-4877 (2012).
Papac-Milicevic, N., et al. The interferon stimulated gene 12 inactivates vasculoprotective functions of NR4A nuclear receptors. Circ. Res. 110(8), e50-63 (2012).
Grespin, M.E., et al. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway. J. Biol. Chem. 283(37), 25576-25588 (2008).
Holaska, J.M., et al. Calreticulin Is a receptor for nuclear export. J. Cell. Biol. 152(1), 127-140 (2001).
Saito, N. & Matsuura, Y. A 2.1-A-resolution crystal structure of unliganded CRM1 reveals the mechanism of autoinhibition. J. Mol. Biol. 425(2), 350-364 (2013).
Petosa, C., et al. Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol. Cell. 16(5), 761-175 (2004).
Krause, K.H. & Michalak, M. Calreticulin. Cell 88(4), 439-443 (1997).
Michalak, M., Robert Parker, J.M. & Opas, M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium. 32(5-6), 269-278 (2002).
Michalak, M., et al. Calreticulin. Biochem. J. 285(Pt 3), 681-692 (1992).
Michalak, M., et al. Calreticulin: one protein, one gene, many functions. Biochem. J. 344(Pt 2), 281-292 (1999).
Lu, Y.C., Weng, W.C. & Lee, H. Functional Roles of Calreticulin in Cancer Biology. Biomed. Res. Int. 526524 (2015).
Stade, K., et al. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90(6), 1041-1050 (1997).
Gerace, L., Ottaviano, Y. & Kondor-Koch, C. Identification of a major polypeptide of the nuclear pore complex. J. Cell Biol. 95(3), 826-837 (1982).
Fornerod, M., et al. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J. 16(4), 807-816 (1997).
Siddiqui, N. & Borden, K.L. mRNA export and cancer. Wiley Interdiscip. Rev. RNA 3(1), 13-25 (2012).
MacLennan, D.H., Yip, C.C., Iles, G.H. & Seeman P. Isolation of sarcoplasmic reticulum proteins. Cold Spring Harb. Symp. Quant. Biol. 37, 469-477 (1972).
Fliegel, L., et al. Molecular cloning of the high affinity calciumbinding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 264(36), 21522-21528 (1989).
Ostwald, T.J. & MacLennan, D.H. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249(3), 974-979 (1974).
Waisman, D.M., Salimath, B.P. & Anderson, M.J. Isolation and Characterization of Cab-63, a Novel Calcium-Binding Protein. Journal of Biological Chemistry 260(3), 1652-1660 (1985).
Smith, M.J. & Koch, G.L. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J. 8(12), 3581-3586 (1989).
Mueller, C.F., et al. Differential phosphorylation of calreticulin affects AT1 receptor mRNA stability in VSMC. Biochem. Biophys. Res. Commun. 370(4), 669-674 (2008).
Nakamura, K., et al. Functional specialization of calreticulin domains. J. Cell Biol. 154(5), 961-972 (2001).
Villagómez, M., et al. Calreticulin and focal-contact-dependent adhesion. Biochem. Cell Biol. 87(4), 545-556 (2009).
Opas, M., et al. Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of nonmuscle cells. J. Cell Physiol. 149(1), 160-171 (1991).
Liu, J. & DeFranco, D.B. Protracted nuclear export of glucocorticoid receptor limits its turnover and does not require the exportin 1/CRM1-directed nuclear export pathway. Mol. Endocrinol. 14(1), 40-51 (1985).
Kudo, N., et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell. Res. 242(2), 540-547 (1998).
Nguyen, M.M., et al. Cytoplasmic localization of the androgen receptor is independent of calreticulin. Mol. Cell Endocrinol. 302(1), 65-72 (2009).
Senapedis, W.T., Baloglu, E. & Landesman, Y. Clinical translation of nuclear export inhibitors in cancer. Semin. Cancer Biol. 27, 74-86 (2014).
Gravina, G.L., et al. XPO1/CRM1-selective inhibitors of nuclear export (SINE) reduce tumor spreading and improve overall survival in preclinical models of prostate cancer (PCa). J. Hematol. Oncol. 7, 46 (2014).
Freedman, D.A. & Levine, A.J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell Biol. 18(12), 7288-7293 (1998).
Sheng, W., et al. Overexpression of calreticulin contributes to the development and progression of pancreatic cancer. J. Cell Physiol. 229(7), 887-897 (2014).
Lwin, Z.M., et al. Clinicopathological significance of calreticulin in breast invasive ductal carcinoma. Mod. Pathol. 23(12), 1559-1566 (2010).
Schutz, S.V., Cronauer, M.V. & Rinnab, L. Inhibition of glycogen synthase kinase-3beta promotes nuclear export of the androgen receptor through a CRM1-dependent mechanism in prostate cancer cell lines. J. Cell Biochem. 109(6), 1192-1200 (2010).
Kanwal, C., Li, H. & Lim, C.S. Model system to study classical nuclear export signals. AAPS PharmSci. 4(3), E18 (2002).
Burns, K., et al. Calreticulin: from Ca2+ binding to control of gene expression. Trends Cell Biol. 4(5), 152-154 (1994).
Sela-Brown, A., et al. Calreticulin inhibits vitamin D’s action on the PTH gene in vitro and may prevent vitamin D’s effect in vivo in hypocalcemic rats. Mol. Endocrinol. 12(8), 1193-1200 (1998).
Prufer, K. & Barsony, J. Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol. Endocrinol. 16(8), 1738-1751 (2002).
Umemoto, T. & Fujiki, Y. Ligand-dependent nucleo-cytoplasmic shuttling of peroxisome proliferator-activated receptors, PPARalpha and PPARgamma. Genes Cells 17(7), 576-596 (2012).
Gong, Y., et al. Nuclear export signal of androgen receptor (NESAR) regulation of androgen receptor level in human prostate cell lines via ubiquitination and proteasome-dependent degradation. Endocrinology 153(12), 5716-5725 (2012).