2014, Number 4
<< Back Next >>
Rev Cubana Farm 2014; 48 (4)
Evaluation of calcium and magnesium citrate from cuban dolomite
Rodríguez CJE, Martínez ÁL, Bermello CA
Language: English
References: 26
Page: 636-645
PDF size: 257.12 Kb.
ABSTRACT
Introduction: calcium and magnesium salts are used as nutritional supplements
obtained from natural sources such as dolomite, which is a double complex of
calcium and magnesium carbonate. In search of a calcium raw material with
greater bioavailability, a process of obtaining calcium and magnesium citrate salt
from dolomite deposits was developed.
Objective: to evaluate calcium and magnesium citrate from dolomite.
Methods: chemical and technological analysis, Powder X-ray Diffractometry
attenuated total reflection-Fourier transform infrared spectrometry (ATR-FTIR),
differential scanning calorimetry and thermogravimetric analysis were all used.
Results: the chemical analysis confirmed the existence of calcium (over 10 %), and of magnesium (4.5 and 5 %) whereas citric acid content was under 3 %,
The levels of toxic metals were below the maximum allowable limits for pharmaceutical products. The density values were below those of the dolomite, with
high porosity and flow deficit. The X-ray diffractomery indicated that dolomite was
transformed into calcium and magnesium citrate salts whereas, the infrared spectra
showed the presence of characteristic COO¯, -OH and -CH
2 groups of citrates. The
differential scanning calorimetry showed that salt had three endothermic peaks at
101.7 ºC, 167.1 ºC y 194.6 ºC and on the other hand, termogravimetry analysis
confirmed that 30.9 % of the total mass is lost at temperatures lower than 295 ºC.
Conclusions: the presence of calcium and magnesium citrate salt is corroborated.
REFERENCES
Abad Manteca L, Izquierdo E, Andrés M, Vega G, Mendo M, Pérez Castrillon JL. Prevalencia de osteoporosis en pacientes con síndrome coronario agudo. Rev Osteoporos Metab Miner. 2010;2(1):15-22.
Blake GM, Fogelman I. An update on dual-energy X-ray absorptiometry. Semin Nucl Med. 2010;40(1):62-73.
Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy X-ray absorptiometry study. J Pediatr. 2001;139:509-15.
Ma D, Jones G. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based casecontrol study. J Clin Endocrinol Metab. 2003;88:1486-91.
FAO/WHO. Human, Vitamin and Mineral Requeriments. Report of a joint FAO/WHO expert consultation. Cap. 11 (Calcium); Cap. 14 (Magnesium). Bangkok: FAO/WHO; 2001. p. 151-73, 223-33.
Sweet MG, Sweet JM, Jeremiah MP, Galazka SS. Diagnosis and treatment of osteoporosis. Am Fam Physician. 2009;79(3):193-200.
Ranade VV, Somberg JC. Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to humans. Am J Ther. 2001;8(5):345-57.
Whang R. Magnesium deficiency: Pathogenesis, prevalence and clinical implication. Am J Med. 1987;87:24-9.
Hanzlik R, Fowler S, Fisher D. Relative Bioavailability of Calcium from Calcium Formate, Calcium Citrate, and Calcium Carbonate. JPET. 2005;313(3):1217-22.
Heaney RP. Factors influencing the measurement of bioavailability, taking calcium as a model. J Nutr. 2001;131:S1334-48.
Sakhaee K, Bhuket T, Adams-Huet B, Sudhaker Rao D. Meta-analysis of calcium bioavailability: a comparison of calcium citrate with calcium carbonate. Am J Ther. 1999;6:313-21.
Rodríguez Chanfrau J E, Graveran T, Rodríguez I, Díaz I, Roberto Y, Mateus L, et al. Proceso de obtención de citrato de calcio y magnesio a partir de dolomíta. Patente CO1F 1/00; A61K 33/06, A61K 9/00, C07C 51/41. Certificado 22794. 2002.
Rodríguez Chanfrau JE, Lagarto Parra A, Bueno Pavón V, Guerra Sardiña I, Vega Hurtado Y. Effectiveness of washout process to obtain calcium and magnesium citrate at bench scale. Rev Cubana Farm. 2010;45(1):5-12.
USP. United States Pharmacopoeia 31. US Pharmacopoeia Convention, Inc. Washington DC: USP; 2008. p. 149, 753-7, 1914-7, 2834-8.
Agilent Technologies. Flame Atomic Absorption Spectrometry. Analytical Methods. 10ma ed. New York: Agilent Technologies, Inc.; 2012. p. 15-82.
L.M.C. Sílice. Técnica de análisis. Laboratorio Central de Minerales "José Issac del Corral". Cuba: MINBAS;1988.
L.M.C. Flúor. Técnica de análisis. Laboratorio Central de Minerales "José Issac del Corral". Cuba: MINBAS;1988.
Iraizoz A, Bilbao O, Barrios MA. Conferencias de Tecnología Farmacéutica. La Habana: Editorial ENPES; 1990. p. 111-241.
JCPDS-ICDD. X-ray Diffraction Data. International Centre for Diffraction Data. USA. 1996.
SDBS. ASTRIO-DB: Spectral database for organic compounds. National Institute of Advanced Industrial Science and Technology. 2008. [citado 23 nov 2013]. Disponible en: http://riodboi.ibase.aist.go.jp/sdbs/
Wagner C, Ferrer E, Baran E. Spectroscopic and thermal behaviour of complex compounds useful for magnesium supplementation. Acta Farm Bonaerense. 1999;18(1):5-12.
Amidon GE, Secreast PJ, Mudie D. Particle, powder, and compact characterization. In: Oiu Y, Chen Y, Zhang G. Developing solid oral dosage forms, Pharmaceutical theory and practice. Cap. 8. New York: Elservier Inc.; 2009. p. 163-70.
Rodríguez Chanfrau JE, Llanes González A, Roberto Y. Physical, chemical physical and technological characterization of a Cuban dolomite deposit for its possible use as a nutritional supplement source. Rev Aliment. 1999;305:61-5.
Drusch S, Serfert Y, Schwarz K. Microencapsulation of fish oil with noctenylsuccinate- derivatised starch: flow properties and oxidative stability. Eur J Lipid Sci Technol. 2006;108:501-12.
Abatzoglou N, Simard J. Prediction of segregation tendency occurrence in dry particulate pharmaceutical mixtures: development of a mathematical tool adapted for granular systems application. Pharm Develop Tech. 2005;1:59-70.
Där A. Tecnología Farmacéutica. Madrid: Editorial Arcibia; 1979. p. 22-4.