2015, Number 2
<< Back Next >>
Rev Esp Med Quir 2015; 20 (2)
Warburg effect: the right hand in the development of cancer
Herrera-González NE, Martínez-García F, Mejía-Jiménez E
Language: Spanish
References: 30
Page: 171-177
PDF size: 476.88 Kb.
ABSTRACT
Altered cellular metabolism is a defining feature of cancer. Understanding the results of this differential metabolism needs a detailed analysis of glucose metabolism and its relation to energy production in cancer cells. Interest in the Warburg effect has escalated in recent years due to the proven utility of FDG-PET for imaging tumors in cancer patients. The underlying mechanisms leading to the Warburg effect include upregulation of enzymes in glycolisis, intracellular pH regulation, hypoxia-induced switch and metabolic reprogramming after loss of p53 function. Oncogenic alterations involve a set of gene deletions, amplifications and mutations. Many oncogenes and tumor suppressor genes cluster along the signaling pathways that regulate HIF-1 and p53. Energy contribution on each cellular pathway depends on the tumor, activated oncogenes and the micro-environment’s tumor.
REFERENCES
Casado Pinna M. (2009). Regulación de la expresión génica por glucosa. Monografías de la Real Academia Nacional de Farmacia.
Locasale, J. W., & Cantley, L. C. (2010). Altered metabolism in cancer. BMC Biology, 8(1),88.
Archetti, M. (2014). Evolutionary dynamics of the Warburg effect: Glycolysis as a collective action problem among cancer cells. Journal of theoretical biology, 341,1-8.
Kufe, D. W., Pollock, R. E., Weichselbaum, R. R., Bast, R. C., Gansler, T. S., Holland, J. F., & Croce, C. M. (2003). Oncogenes in the initiation and progression of neoplasia in: Holland-Frei Cancer Medicine, 6th edition.
Martínez-Ezquerro, J. D., & Herrera, L. A. Angiogénesis: VEGF/VEGFRs como Blancos Terapéuticos en el Tratamiento Contra el Cáncer. Instituto Nacional de Cancerología–Instituto de Investigaciones Biomédicas, 83-88.
Marín, A.H (2009). El factor inducido por la hipoxia-(HIF-1) y la glucólisis en las células tumorales. Revista de Educación Bioquímica, 28(2),42-51.
Gonzalez Rengifo, G. F., Gonzales Castañeda, C., Espinosa Guerinoni, D., & Rojas Tubeh, C. (2007). Sobre-expresión de genes de las enzimas de la vía glicolítica en células cancerígenas. Acta Médica Peruana, 24(3),187-197.
Nijsten, M. W., & van Dam, G. M. (2009). Hypothesis: using the Warburg effect against cancer by reducing glucose and providing lactate. Medical hypotheses, 73(1),48-51.
Thorne, J. L., & Campbell, M. J. (2014). Nuclear receptors and the Warburg effect in cancer. International Journal of Cancer.
Cuezva, J. M. 12.(2009). La huella metabólica del cáncer. Monografías de la Real Academia Nacional de Farmacia.
Sánchez Aragó, M., & Cuezva, J. M. (2012). La mitocondria: un nuevo paradigma en oncología. Monografías de la Real Academia Nacional de Farmacia.
Matoba S, Kang J, Patino D. W, Wragg A, Boehm M, Gavrilova O, Hurley J. P, Bunz F, Hwang P. p53 Regulates Mitochondrial Respiration. Sciencexpress. 2006 May; 1-3.
Jose, C., Bellance, N., & Rossignol, R. (2011). Choosing between glycolysis and oxidative phosphorylation: A tumor’s dilemma? Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807(6),552-561.
Lopez-Lazaro, M. (2008). The Warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 8(3), 305-312.
Zheng, J. (2012). Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncology letters, 4(6),1151-1157.
Moreno-Acosta, P., Carrillo, S., Gamboa, O., Acosta, Y., Balart-Serra, J., Magne, N., & Romero-Rojas, A. E. (2013). Expresión de marcadores hipóxicos y glucolíticos CAIX, GLUT-1, HKII y su relación con la respuesta temprana al tratamiento en carcinoma escamo celular de cuello uterino. Progresos de Obstetricia y Ginecología, 56(8),404-413.
Brown R, Goodman T, Zasadny K, Greenson J, Whal R. (1999). Expression of hexokinase II and glut-1 in untreated human breast cancer. Nuclear Medicine and Biology 29(4):443-453.
Gogvadze, V., Zhivotovsky, B., & Orrenius, S. (2010). The Warburg effect and mitochondrial stability in cancer cells. Molecular aspects of medicine, 31(1),60-74.
Wagner Grau, P. (2011). El factor HIF-1 inducido por la hipoxia y la sensibilidad al oxígeno: Rol del hierro intracelular. Acta Médica Peruana, 28(3),163-168.
Boticario C., & Cascales Angosto, M. (2010). Hipoxia y cáncer. In Anales de la Real Academia Nacional de Farmacia (Vol. 76, No. 3, pp. 379-408).
Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3(10), 721-732.
Nagy, M. A. (2010). HIF-1 is the Commander of Gateways to Cancer. Journal of Cancer Science & Therapy.
Ivan M,Kondo K,Yng H,Kim W,Valiando J,Ohm M,Salic A, Asara JM,Lane WS,Kaelin WG Jr. HIF1alpha targeted for VHL–mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001,292(5516):464-468.
Kim, J. W., & Dang, C. V. (2006). Cancer’s molecular sweet tooth and the Warburg effect. Cancer research, 66(18), 8927-8930.
Gnarra,I., Toryz,K., Wheng,Y., Schmidt,L., Weiz,M. H.,Liz,H. and Walther, M.M. (1994). Mutations of the VHL tumour suppressors gene in renal. Nat Gene, 7,85-90
Lando D,Peet DJ,Gorman JJ,Whelan DA,Whitelaw ML,Bruick RK: FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hipoxia.inducible factor. Genes Dev 2002,16(12):1466-1471.
Rosas, N., & Torres, E. (1999). Asociación entre la Proteína p53 Mutada, Grado de Infiltración y Tamaño del Tumor en Cáncer Colorrectal. Hospital Central FAP 1987-1996. In Anales de la Facultad de Medicina (Vol. 60, No. 2-1999, pp. 85-92).
Menéndez, M. H., & Hernández, M. D. L. Á. R. (1999). Oncogenes y cáncer. Rev Cubana Oncol, 15(2), 131-9.
Valdespino-Gómeza, V. M., & Valdespino-Castillob, V. E. (2010). Alteraciones celulares y moleculares no clásicas en el desarrollo del cáncer. Gac Med Mex,146(3).
Bai, L., & Zhu, W. G. (2006). p53: structure, function and therapeutic applications. J Cancer Mol, 2(4), 141-153.