2014, Number 2
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2014; 17 (2)
The bacterial redox sensor ArcB
Núñez-Oreza LA, Georgellis D, Álvarez AF
Language: Spanish
References: 55
Page: 135-146
PDF size: 649.01 Kb.
ABSTRACT
The Arc two-component system comprises the sensor kinase ArcB and the response regulator ArcA. In
Escherichia coli, this system regulates the transcriptional network involved in energy metabolism according
to the redox conditions of their environment. Under anoxic growth conditions, ArcB autophosphorylates
and transphosphorylates ArcA, which in turn represses or activates the expression of its target operons.
Under aerobic conditions, ArcB acts as a phosphatase that catalyzes the dephosphorylation of ArcA-P
and thereby releasing its transcriptional regulation. This review describes the key structural features of ArcB,
and the main events for Arc signaling, including signal reception and kinase regulation. It also compares
the ArcB sequence of
E. coli with the one of other bacteria and reveals similarities and differences that
may be of foremost importance for the regulation of this sensor kinase protein.
REFERENCES
Hoch, J.A. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3, 165–170 (2000).
Stock, A.M., Robinson, V.L. & Goudreau, P.N. Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215 (2000).
Parkinson, J.S. & Kofoid, E.C. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26, 71–112 (1992).
Parkinson, J.S. Signal transduction schemes of bacteria. Cell 73, 857–871 (1993).
Stock, J.B. in Two-Component Signal Transduct. (J.A, H. & Silhavy, T. J.) 25–51 (ASM Press, 1995). at
Iuchi, S., Matsuda, Z., Fujiwara, T. & Lin, E.C. The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Mol. Microbiol. 4, 715–727 (1990).
Kwon, O., Georgellis, D., Lynch, A.S., Boyd, D. & Lin, E.C. The ArcB sensor kinase of Escherichia coli: genetic exploration of the transmembrane region. J. Bacteriol. 182, 2960–2966 (2000).
Georgellis, D., Lynch, A. S. & Lin, E. C. In vitro phosphorylation study of the Arc two-component signal transduction system of Escherichia coli. J. Bacteriol. 179, 5429–5435 (1997).
Malpica, R., Franco, B., Rodríguez, C., Kwon, O. & Georgellis, D. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc. Natl. Acad. Sci. U S A 101, 13318–13323 (2004).
Álvarez, A. F., Rodríguez, C. & Georgellis, D. Ubiquinone and menaquinone electron carriers represent the yin and yang in the redox regulation of the ArcB sensor kinase. J. Bacteriol. 195, 3054–3061 (2013).
Iuchi, S. & Lin, E.C. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc. Natl. Acad. Sci. U S A 85, 1888–1892 (1988).
Liu, X. & De Wulf, P. Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. J. Biol. Chem. 279, 12588–12597 (2004).
Salmon, K.A. et al. Global gene expression profiling in Escherichia coli K12: effects of oxygen availability and ArcA. J. Biol. Chem. 280, 15084–15096 (2005).
Iuchi, S., Cameron, D.C. & Lin, E.C. A second global regulator gene (arcB) mediating repression of enzymes in aerobic pathways of Escherichia coli. J. Bacteriol. 171, 868–873 (1989).
Núñez Oreza, L.A., Álvarez, A.F., Arias-Olguín, I.I., Torres Larios, A. & Georgellis, D. The ArcB leucine zipper domain is required for proper ArcB signaling. PLoS One 7, e38187 (2012).
Zhulin, I.B., Taylor, B.L. & Dixon, R. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22, 331–333 (1997).
Swanson, R.V, Alex, L.A. & Simon, M.I. Histidine and aspartate phosphorylation: two-component systems and the limits of homology. Trends Biochem. Sci. 19, 485–490 (1994).
Ishige, K., Nagasawa, S., Tokishita, S. & Mizuno, T. A novel device of bacterial signal transducers. EMBO J. 13, 5195–5202 (1994).
Peña-Sandoval, G. R. & Georgellis, D. The ArcB sensor kinase of Escherichia coli autophosphorylates by an intramolecular reaction. J. Bacteriol. 192, 1735–1739 (2010).
Iuchi, S. & Lin, E.C. Purification and phosphorylation of the Arc regulatory components of Escherichia coli. J. Bacteriol. 174, 5617–5623 (1992).
Kwon, O., Georgellis, D. & Lin, E.C. Phosphorelay as the sole physiological route of signal transmission by the arc two- component system of Escherichia coli. J. Bacteriol. 182, 3858–3862 (2000).
Iuchi, S. & Lin, E.C. Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli. J. Bacteriol. 174, 3972–3980 (1992).
Lynch, A.S. & Lin, E.C. in Escherichia coli Salmonella Cell. Mol. Biol. (Neidhardt, F. C. et al.) 1526–1538 (Am. Soc. Microbiol., 1996).
Georgellis, D., Kwon, O., De Wulf, P. & Lin, E.C. Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system. J. Biol. Chem. 273, 32864–32869 (1998).
Peña-Sandoval, G.R., Kwon, O. & Georgellis, D. Requirement of the receiver and phosphotransfer domains of ArcB for efficient dephosphorylation of phosphorylated ArcA in vivo. J. Bacteriol. 187, 3267–3272 (2005).
Tsuzuki, M., Ishige, K. & Mizuno, T. Phosphotransfer circuitry of the putative multi-signal transducer, ArcB, of Escherichia coli: in vitro studies with mutants. Mol. Microbiol. 18, 953–962 (1995).
Matsushika,A. & Mizuno, T. A dual-signaling mechanism mediated by the ArcB hybrid sensor kinase containing the histidine- containing phosphotransfer domain in Escherichia coli. J. Bacteriol. 180, 3973–3977 (1998).
Ogino, T., Matsubara, M., Kato, N., Nakamura, Y. & Mizuno, T. An Escherichia coli protein that exhibits phosphohistidine phosphatase activity towards the HPt domain of the ArcB sensor involved in the multistep His-Asp phosphorelay. Mol. Microbiol. 27, 573–585 (1998).
Matsubara, M. & Mizuno, T. The SixA phospho-histidine phosphatase modulates the ArcB phosphorelay signal transduction in Escherichia coli. FEBS Lett. 470, 118–124 (2000).
Yamamoto, K. et al. Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J. Biol. Chem. 280, 1448–1456 (2005).
Mika, F. & Hengge, R. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. Genes Dev. 19, TIP Rev.Esp.Cienc.Quím.Biol. 146 Vol. 17, No. 2 2770–2781 (2005).
Taylor, B.L. & Zhulin, I.B. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63, 479–506 (1999).
Zhulin, I.B. & Taylor, B.L. Correlation of PAS domains with electron transport-associated proteins in completely sequenced microbial genomes. Mol. Microbiol. 29, 1522–1533 (1998).
Matsushika, A. & Mizuno, T. Characterization of three putative sub-domains in the signal-input domain of the ArcB hybrid sensor in Escherichia coli(1). J. Biochem. 127, 855–860 (2000).
Bornberg-Bauer, E., Rivals, E. & Vingron, M. Computational approaches to identify leucine zippers. Nucleic Acids Res. 26, 2740–2746 (1998).
Vinson, C., Acharya, A. & Taparowsky, E.J. Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochim. Biophys. Acta 1759, 4–12 (2006).
Mason, J.M. & Arndt, K.M. Coiled coil domains: stability, specificity, and biological implications. Chembiochem. 5, 170–176 (2004).
Gruber, M., Söding, J. & Lupas, A.N. REPPER--repeats and their periodicities in fibrous proteins. Nucleic. Acids Res. 33, W239–243 (2005).
Jung, W.S. et al. Characterization of the Arc two-component signal transduction system of the capnophilic rumen bacterium Mannheimia succiniciproducens. FEMS Microbiol. Lett. 284, 109–119 (2008).
Georgellis, D., Kwon, O., Lin, E.C., Wong, S.M. & Akerley, B.J. Redox signal transduction by the ArcB sensor kinase of Haemophilus influenzae lacking the PAS domain. J. Bacteriol. 183, 7206–7212 (2001).
Tseng, C.P., Albrecht, J. & Gunsalus, R.P. Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli. J. Bacteriol. 178, 1094–1098 (1996).
Iuchi, S., Chepuri, V., Fu, H.A., Gennis, R.B. & Lin, E.C. Requirement for terminal cytochromes in generation of the aerobic signal for the Arc regulatory system in Escherichia coli: study utilizing deletions and lac fusions of cyo and cyd. J. Bacteriol. 172, 6020–6025 (1990).
Malpica, R., Sandoval, G.R., Rodríguez, C., Franco, B. & Georgellis, D. Signaling by the Arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid. Redox Signal 8, 781–795 (2006).
Wissenbach, U., Kröger, A. & Unden, G. The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch. Microbiol. 154, 60–66 (1990).
Unden, G. Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of E. coli and their fnr-independent expression. Arch. Microbiol. 150, 499–503 (1988).
Meganathan, R. Escherichia coli and Salmonella: cellular and molecular biology. Escherichia coli Salmonella Cell. Mol. Biol. (American Society for Microbiology, 1996). at
Gennis, R. B. & Stewart, V. in Escherichia coli Salmonella Cell. Mol. Biol. (Neidhardt, F. C. & Others) 217–261 (American Society for Microbiology, 1996).
Georgellis, D., Kwon, O. & Lin, E.C. Quinones as the redox signal for the Arc two-component system of bacteria. Science 292, 2314–2316 (2001).
Bekker, M. et al. The ArcBA Two-Component System of Escherichia coli Is Regulated by the Redox State of both the Ubiquinone and the Menaquinone Pool †. J Bacteriol 192, 746–754 (2010).
Sharma, P., Stagge, S., Bekker, M., Bettenbrock, K. & Hellingwerf, K. J. Kinase activity of ArcB from Escherichia coli is subject to regulation by both ubiquinone and demethylmenaquinone. PLoS One 8, e75412 (2013).
Swem, L. R. et al. Signal transduction by the global regulator RegB is mediated by a redox-active cysteine. EMBO J. 22, 4699–4708 (2003).
Bock, A. & Gross, R. The unorthodox histidine kinases BvgS and EvgS are responsive to the oxidation status of a quinone electron carrier. Eur. J. Biochem. 269, 3479–3484 (2002).
Bader, M. W., Xie, T., Yu, C. A. & Bardwell, J. C. Disulfide bonds are generated by quinone reduction. J. Biol. Chem. 275, 26082–26088 (2000).
Regeimbal, J. et al. Disulfide bond formation involves a quinhydrone-type charge-transfer complex. Proc. Natl. Acad. Sci. U. S. A. 100, 13779–13784 (2003).
Fisher, N. & Rich, P. R. A motif for quinone binding sites in respiratory and photosynthetic systems. J. Mol. Biol. 296, 1153–1162 (2000).