2014, Number 4
<< Back Next >>
Ortho-tips 2014; 10 (4)
Bone tissue substitutes
Cab CE
Language: Spanish
References: 47
Page: 208-217
PDF size: 270.14 Kb.
ABSTRACT
Biomaterial, description is called biomaterial to the products used to replicate the function of living tissues in mechanically functional and physiologically acceptable biological systems securely that are temporarily or permanently implanted in the body and trying to restore the existing defect and, in some cases get tissue regeneration biomaterial contact with living tissues should not cause them any alteration, limiting the raw materials with which they can address their design. However, biomaterials are a set whose main characteristic is its great diversity. Including metals, ceramics, glass, steel and other metal alloys, multiple classes of synthetic polymers, natural polymers, modified biological tissues, etc. Next to this there is another functional structural diversity include, since biomaterials are used in cardiovascular surgery different from those applied in orthopedic, dental or ophthalmic surgery and, in turn, are different from those used as biodegradable sutures or as carriers for drug delivery.
REFERENCES
Williams DF. Biomaterials and biocompatibility. Med Prog Technol. 1976; 4: 31-42.
Williams DF. The Williams dictionary of biomaterials. Liverpool, UK. University Press. 1999, p. 343.
Hench LL, Ethridge ECE. Biomaterials. An interfacial approach. Biophysics and Bioengineering Series Chapters 14, Vol 4. Academic Press, New York. 1982, p. 384.
Chang Y, Tsai CC, Liang HC, Sung HW. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials. 2002; 23: 2447-2457.
Murray PE, Garcia GC, Garcia GF. How is the biocompatibility of dental biomaterials evaluated? Med Oral Patol Oral Cir Bucal. 2007; 12: E258-266.
Raghunath J, Rollo J, Sales KM, Butler PE, Seifalian AM. Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol Appl Biochem. 2007; 46 (Pt 2): 73-84.
Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J. 2007; 36: 539-568.
Cornell CN, Lane JM, Chapman M, Merkow R, Seligson D, Henry S, et al. Multicenter trial of Collagraft as bone graft substitute. J Orthop Trauma. 1991; 5: 1-8.
De Bari C, Pitzalis C, Dell’Accio F. Reparative medicine: from tissue engineering to joint surface regeneration. Regen Med. 2006; 1: 59-69.
Kretlow JD, Mikos AG. Review: mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng. 2007; 13: 927-938.
Bolander ME, Balian C. The use of demineralized bone matrix in the repair of segmental defects. J Bone Joint Surg Am. 1986; 68-A: 1264-1274.
Lin KY, Bartlett SP, Yaremuchuk MJ, Fallon M, Grossman RF, Whitaker LA. The effect of rigid fixation on the survival of onlay bone grafts: an experimental study. Plast Reconstr Surg. 1990; 86 (3): 449-456.
Burchardt H. The biology of bone graft repair. Clin Orthop Relat Res. 1983; 108 (174): 28-42.
Bassett CA. Clinical implications of cell function in bone grafting. Clin Orthop. 1972; 87: 49-59.
Gray JC, Elves MW. Early osteogenesis in compact bone isografts: A quantitative study of the contributions of the different graft cells. Calcif Tissue Int. 1979; 29: 225-237.
Stevenson S. Biology of bone grafts. Orthop Clin North Am. 1999; 30 (4): 543-552.
Friedlander GE. Current concepts review: Bone grafts. Bone Joint Surg Am. 1987; 69-A: 786-790.
Barrère F, van der Valk CM, Dalmeijer RA, Meijer G, Van Blitterswijk CA, de Groot K, et al. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomed Mater Res. 2003; 66: 779-788.
Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L, et al. Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng. 2004; 32: 112-122.
Harris CT, Cooper LF. Comparison of bone graft matrices for human mesenchymal stem cell-directed osteogenesis. J Biomed Mater Res. 2004; 68: 747-755.
Kale AA, Di Cesare PE. Osteoinductive agents: basic science and clinical applications. Am J Orthop. 1995; 24: 752-761.
Mohan S, Baylink DJ. Bone growth factors. Clin Orthop Relat Res. 1991; 263: 30-48.
Vicario EC. El efecto osteoinductor de la matriz de los aloinjertos: estudio experimental en cultivos de osteoblastos humanos (tesis doctoral). Tesis de la Universidad Complutense de Madrid, Facultad de Medicina, Madrid, 2003.
Fujlbayashl S, Neo M, Kim H M, Kokubo T, Nakamura T. Osteoinduction of porous bioactive titanium metal. Biomaterials. 2004; 25: 443-450.
Stevenson S, Li XQ, Davy DT, Klein L, Goldberg VM. Critical biological determinants of incorporation of non-vascularized cortical bone grafts. Quantification of a complex process and structure. J Bone Joint Surg Am. 1997; 79 (1): 1-16.
Leunig M, Yuan F, Berk DA. Angiogenesis and growth of isografted bone: quantitative in vivo assay in nude mice. Lab Invest. 1994; 71: 300-307.
Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989; 3: 192-195.
Cockin J. Autologous bone grafting: complications at the donor site. J Bone Joint Surg Br. 1971; 53: 153.
Weikel AM, Habal MB. Meralgia paraesthetica: a complication of iliac bone procurement. Plast Reconstr Surg. 1977; 60: 572-574.
Boone DW. Complications of iliac crest graft and bone grafting alternatives in foot and ankle surgery. Foot Ankle Clin. 2003; 8: 1-14.
Aro HT, Aho AJ. Clinical use of bone allografts. Ann Med. 1993; 25 (4): 403-412.
Nicoll EA. The treatment of gaps in long bones by cancellous insert grafts. J Bone Joint Surg Br. 1956; 38-B: 70-82.
Weber BG, Cech O. Pseudoarthrosis pathophysiology, biomechanics and therapy, results. New York: Grune & Stratton, 1980; 1-60.
Davis AG. Fibular substitution for tibial defects. J Bone Joint Surg Am. 1944; 25-A: 229-237.
Nolan PC. Living bone grafts. BMJ. 1992; 304: 1520-1521.
Chacha PB. Vascularized pedicular bone grafts. Int Orthop. 1984; 8: 117-138.
Davis JB. The muscle-pedicle bone graft in hip fusion. J Bone Joint Surg Am. 1954; 36-A: 790-799.
Kuhlmann JN, Mimoun M, Boablghl A, Baux S. Vascularized bone graft pedicled on the volar carpal artery for non-union of the scaphoid. J Hand Surg [Br]. 1987; 12 (2): 203-210.
Taylor GI, Miller GD, Ham FJ. The free vascularized bone graft. A clinical extension of microvascular techniques. Plast Reconstr Surg. 1975; 55 (5): 533-544.
Youdas JW, Wood MB, Cahalan TD, Chao EY. A quantitative analysis of donor site morbidity after vascularized fibula transfer. J Orthop Res. 1988; 6: 621-629.
Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res. 2002; 395: 44-52.
Kelly CM, Wilkins RM, Gitelis S, Hartjen C, Watson JT, Kim PT. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin Orthop Relat Res. 2001; 382: 42-50.
Shors E. Bone graft substitutes: clinical studies using coralline hydroxiapatite biomaterials in surgery. In: Bakker FC (ed), Walenkamp GHIM. Stuttgart: George Thieme Verlag, 1998; pp. 83-89.
Chapman MW, Bucholz R, Cornell C. Treatment of acute fractures with a collagen-calcium phosphate graft material: a randomized clinical trial. J Bone Joint Surg Am. 1997; 79: 495-502.
Holmes RE, Bucholz RW, Mooney V. Porous hydroxiapatite as a bone-graft substitute in metaphyseal defects. A histometric study. J Bone Joint Surg Am. 1986; 68: 904-911.
Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res. 2000; (371): 10-27.
Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop Relat Res. 1987; 225: 7-16.