2014, Number s1
<< Back Next >>
Gac Med Mex 2014; 150 (s1)
Contributions of proteomics in the study of diabetes
Jiménez-Flores LM, Flores-Pérez EC, Mares-Álvarez DP, Macías-Cervantes MH, Ramírez-Emiliano J, Pérez-Vázquez V
Language: Spanish
References: 51
Page: 88-94
PDF size: 229.04 Kb.
ABSTRACT
The incidence of type 2 diabetes mellitus (T2D) is growing rapidly due to aging, urbanization, changes in lifestyle, and
increasing prevalence of obesity. In T2D, chronic hyperglycemia leads to macro and micro vascular complications, which
currently are serious problem for health systems worldwide. The complexity of T2D and its complications requires study
skills of high performance that provide important information in the understanding of the pathophysiology of the disease
and biological pathways involved in development of T2D and its complications. In this work we describe the recent
contributions of proteomics in the study of T2D and discuss its importance in the identification of therapeutic targets
and biomarkers that help to improve the diagnosis of T2D, monitor the disease progression, and the development of
new drugs to improve treatment and reduce its complications.
REFERENCES
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047-53.
International diabetes federation. En: IDF Diabetes Atlas. 6th ed. Bruselas, Bélgica: International Diabetes Federation; 2013.
Latha M, Pari L. Effect of an aqueous extract of Scoparia dulcis on blood glucose, plasma insulin and some polyol pathway enzymes in experimental rat diabetes. Braz J Med Biol Res. 2004;37(4):577-86.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34 Suppl 1:S62-9.
Verrills NM. Clinical proteomics: present and future prospects. Clin Biochem Rev. 2006;27(2):99-116.
Wilkins MR, Pasquali C, Appel RD, et al. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y). 1996;14(1):61-5.
Khurana M, Traum AZ, Aivado M, et al. Urine proteomic profiling of pediatric nephrotic syndrome. Pediatr Nephrol. 2006;21(9):1257-65.
Willard HF, Angrist M, Ginsburg GS. Genomic medicine: genetic variation and its impact on the future of health care. Philos Trans R Soc Lond B Biol Sci. 2005;360(1460):1543-50.
Cui JW, Wang J, He K, et al. Proteomic analysis of human acute leukemia cells: insight into their classification. Clin Cancer Res. 2004;10(20): 6887-96.
Kim HJ, Cho EH, Yoo JH, et al. Proteome analysis of serum from type 2 diabetics with nephropathy. J Proteome Res. 2007;6(2):735-43.
Sánchez JC, Chiappe D, Converset V, et al. The mouse SWISS-2D PAGE database: a tool for proteomics study of diabetes and obesity. Proteomics. 2001;1(1):136-63.
Hu L, Evers S, Lu ZH, Shen Y, Chen J. Two-dimensional protein database of human pancreas. Electrophoresis. 2004;25(3):512-8.
Ahmed M, Forsberg J, Bergsten P. Protein profiling of human pancreatic islets by two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res. 2005;4(3):931-40.
Metz TO, Jacobs JM, Gritsenko MA, et al. Characterization of the human pancreatic islet proteome by two-dimensional LC/MS/MS. J Proteome Res. 2006;5(12):3345-54.
Fountoulakis M, Juranville JF, Berndt P, Langen H, Suter L. Two-dimensional database of mouse liver proteins. An update. Electrophoresis. 2001;22(9):1747-63.
Fountoulakis M, Suter L. Proteomic analysis of the rat liver. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;782(1-2):197-218.
Hoogland C, Sánchez JC, Tonella L, et al. The 1999 SWISS-2DPAGE database update. Nucleic Acids Res. 2000;28(1):286-8.
Ortsäter H, Bergsten P. Protein profiling of pancreatic islets. Expert Rev Proteomics. 2006;3(6):665-75.
Sánchez JC, Converset V, Nolan A, et al. Effect of rosiglitazone on the differential expression of diabetes-associated proteins in pancreatic islets of C57Bl/6 lep/lep mice. Mol Cell Proteomics. 2002;1(7):509-16.
Qiu L, List EO, Kopchick JJ. Differentially expressed proteins in the pancreas of diet-induced diabetic mice. Mol Cell Proteomics. 2005;4(9): 1311-8.
Ahmed M, Muhammed SJ, Kessler B, Salehi A. Mitochondrial proteome analysis reveals altered expression of voltage dependent anion channels in pancreatic β-cells exposed to high glucose. Islets. 2010; 2(5):283-92.
Petyuk VA, Qian WJ, Hinault C, et al. Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues. J Proteome Res. 2008;7(8):3114-26.
Højlund K, Wrzesinski K, Larsen PM, et al. Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem. 2003;278(12):10436-42. Gaceta Médica de México. 2014;150 Suppl 1 94
Hittel DS, Hathout Y, Hoffman EP, Houmard JA. Proteome analysis of skeletal muscle from obese and morbidly obese women. Diabetes. 2005;54(5):1283-8.
Simoneau JA, Kelley DE. Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol. 1997;83(1):166-71.
Andersen H, Nielsen S, Mogensen CE, Jakobsen J. Muscle strength in type 2 diabetes. Diabetes. 2004;53(6):1543-8.
Mullen E, Ohlendieck K. Proteomic profiling of non-obese type 2 diabetic skeletal muscle. Int J Mol Med. 2010;25(3):445-58.
Mullen E, O’Reilly E, Ohlendieck K. Skeletal muscle tissue from the Goto-Kakizaki rat model of type-2 diabetes exhibits increased levels of the small heat shock protein Hsp27. Mol Med Rep. 2011;4(2):229-36.
Vaulont S, Vasseur-Cognet M, Kahn A. Glucose regulation of gene transcription. J Biol Chem. 2000;275(41):31555-8.
Lauro D, Kido Y, Castle AL, et al. Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nat Genet. 1998;20(3):294-8.
Edvardsson U, von Lowenhielm HB, Panfilov O, Nystrom AC, Nilsson F, Dahllof B. Hepatic protein expression of lean mice and obese diabetic mice treated with peroxisome proliferator-activated receptor activators. Proteomics. 2003;3(4):468-78.
Nandi A, Kitamura Y, Kahn CR, Accili D. Mouse models of insulin resistance. Physiol Rev. 2004;84(2):623-47.
Morand JP, Macri J, Adeli K. Proteomic profiling of hepatic endoplasmic reticulum-associated proteins in an animal model of insulin resistance and metabolic dyslipidemia. J Biol Chem. 2005;280(18): 17626-33.
Tozzo E, Ponticiello R, Swartz J, et al. The dual peroxisome proliferator- activated receptor alpha/gamma activator muraglitazar prevents the natural progression of diabetes in db/db mice. J Pharmacol Exp Ther. 2007;321(1):107-15.
Kim GH, Park EC, Yun SH, et al. Proteomic and bioinformatic analysis of membrane proteome in type 2 diabetic mouse liver. Proteomics. 2013;13(7):1164-79.
Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51(2):679-89.
Valle A, Catalán V, Rodríguez A, et al. Identification of liver proteins altered by type 2 diabetes mellitus in obese subjects. Liver Int. 2012;32(6): 951-61.
Rector RS, Thyfault JP, Uptergrove GM, et al. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J Hepatol. 2010;52(5):727-36.
Sun HD, Ru YW, Zhang DJ, et al. Proteomic analysis of glutathione S-transferase isoforms in mouse liver mitochondria. World J Gastroenterol. 2012;18(26):3435-42.
Guo Y, Darshi M, Ma Y, et al. Quantitative proteomic and functioanl analysis of liver mitochondria from high fat diet (HFD) diabetic mice. Mol Cell Proteomics. 2013;12(12):3744-58.
Schmid GM, Converset V, Walter N, et al. Effect of high-fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics. 2004;4(8):2270-82.
Boden G, Duan X, Homko C, et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes. 2008;57(9):2438-44.
Essop MF, Chan WA, Hattingh S. Proteomic analysis of mitochondrial proteins in a mouse model of type 2 diabetes. Cardiovasc J Afr. 2011;22(4):175-8.
Cai Q, Li B, Yu F, et al. Investigation of the Protective Effects of Phlorizin on Diabetic Cardiomyopathy in db/db Mice by Quantitative Proteomics. J Diabetes Res. 2013;2013:263845.
Cruz-Topete D, List EO, Okada S, Kelder B, Kopchick JJ. Proteomic changes in the heart of diet-induced pre-diabetic mice. J Proteomics. 2011;74(5):716-27.
Kim HJ, Yoo HS, Kim CW. Proteomics in diabetic nephropathy. Proteomics Clin Appl. 2008;2(3):301-11.
Dayarathna MK, Hancock WS, Hincapie M. A two step fractionation approach for plasma proteomics using immunodepletion of abundant proteins and multi-lectin affinity chromatography: Application to the analysis of obesity, diabetes, and hypertension diseases. J Sep Sci. 2008;31(6-7):1156-66.
Karthik D, Ilavenil S, Kaleeswaran B, Sunil S, Ravikumar S. Proteomic analysis of plasma proteins in diabetic rats by 2D electrophoresis and MALDI-TOF-MS. Appl Biochem Biotechnol. 2012;166(6):1507-19.
Peir-Haur Hung, Ying-Chieh Lu, Yi-Wen Chen, et al. Proteomic identification of plasma biomarkers in type 2 diabetic nephropathy. Journal of Integrated OMICS. 2011;1:151-6.
Zhang R, Barker L, Pinchev D, et al. Mining biomarkers in human sera using proteomic tools. Proteomics. 2004;4(1):244-56.
Liu X, Feng Q, Chen Y, et al. Proteomics-based identification of differentially- expressed proteins including galectin-1 in the blood plasma of type 2 diabetic patients. J Proteome Res. 2009;8(3):1255-62.