2014, Number 1
<< Back Next >>
Rev Cub Gen 2014; 8 (1)
Optimum cutting point for the confirmatory diagnosis of hyperphenylalaninemia by HPLC
Fuentes SLE, Contreras RJ, Alonso JE, Martínez RL
Language: Spanish
References: 21
Page: 36-40
PDF size: 495.96 Kb.
ABSTRACT
Hyperphenylalanines are a group of innate metabolism errors of the phenylalanine amino acid, due to deficiencies in its conversion to tyrosine. From the biochemical point of view they are characterized by an increase in phenylalanine levels in serum and low or normal tyrosine values, while from the clinical point of view they are associated with intellectual impairment. In this work the methodology applied for the determination of the optimal cutting point for the phenylalanine/tyrosine ratio is described, as the second diagnostic criterion applied in The National Center for Medical Genetics in Cuba. A normality study for the variable under study was carried out applying the Shapiro-Wilk test, analyzing the association of phenylalanine levels with sex and age variables by means of the U -Mann-Whitney test and the Spearman correlation coefficient respectively, with a significance level equal to p=0,05, using IBM’s SPSS Statistics 20 software for statistical analysis. The optimal cutting point was found determining the value that, at the same time, allowed minimizing the number of wrong diagnoses, while maximizing sensitivity, specificity and Youden’s index, resulting in an optimal cutting value equal to 2 for the phen/tyr ratio. Afterwards the obtained optimal cutting point was validated in a sample of 526 neonates. These result will allow applying the ratio phen/tyr as a second diagnostic criterion for hyperphenylalaninemias in Cuba.
REFERENCES
Wilcox WR, Cederbaum SD. Amino acid metabolism. In Emery and Rimoin’s. Principles and Practice of Medical Genetics. 1. 4th ed. London: Churchill Livingstone; 2002.p.2405-40.
Arriman BE, Cornejo EV. Una primera aproximación al diagnóstico y tratamiento de errores innatos del metabolismo. En: 2. Colombo CM, Cornejo EV, Arriman BE, editoras. Errores innatos en el metabolismo del niño. Santiago de Chile: editorial Universitaria; 1999.p.45-6. ISBN 956-11-1663-4. P.379
Nussbaum RL, McInnes RR, Willard HF. The Molecular and Biochemical Bases of Genetic Disease. In: Schmitt W, Lewis 3. Grigg L, editors. Thompson & Thompson Genetics in Medicine. 6th ed. Philadelphia: W.B. Saunders Company;2001.p.203-53
Sarkissian CN, Boulais DM, McDonald JD, Scriver CR. A Heteroallelic mutant mouse model: A new orthologue for human 4. hyperphenylalaninemia. Mol Genet Metab. 2000;69(3):188-94.
Jennings IG., Cotton RG., Kobe B. Structural interpretation of mutations in phenylalanine hydroxylase protein aids in 5. identifying genotype-pheotype correlations in FAnylketonuria. Eur J Hum Genet. 2000;8(9):683-96.
Scriver CR., Kaufman S., Eisensmith RC., Woo SLC. The Hyperphenylalaninemias. In: Scriver CR, Beaudet AL, Sly WS, 6. Valle D, editors. The metabolic and molecular bases of inherited disease. 7th ed. New York: McGraw-Hill Inc; 1995.p.1015-76.
Ramírez-Farías C., Pérez-Andrade ME., Ibarra-González I., Vela Amieva M. Controversias en la clasificación de las 7. hiperfenilalaninemias. Propuesta de unificación. Acta Pediatr Mex. 2007;28(6):261-9.
Gámez A., Pérez B., Ugarte M., Desviat LR. Expressionanalysis of phenylketonuria mutations. Effect on folding and 8. stability of the phenylalanine hydroxylase protein. J Biol Chem. 2000;275(38):29737-42.
Blau N., Blaskovics ME. Hyperphenylalaninemia. Phisichian‘s guided to the Laboratory diagnosis of metabolic diseases. 9. London: Chapman & Hall Medical;1996.p. 65-78.
Gutiérrez García E, Barrios García B, Damiani Rosell A. Estudio de prevalencia de la Fenilcetonuria en una muestra de 10. niños con Retraso Mental. Rev Cubana Ped. 1989;61(1):94-8.
Online Mendelian Inheritance in Man (OMIM). Disponible en: 11. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CDM=search&DB=omim.
Guthrie R, Susi A. A simple phenylalanine method for detecting Phenylketonuria in large populations of newborn infants. 12. Pediatrics. 1963;32: 338-43.
Heredero L, Atencio G, Vega JL, Gutiérrez E, Damiani A. Diagnóstico precóz de fenilcetonuria en Cuba. Rev Cubana Ped. 13. 1986;58(1):27-33.
Marrero N, Frómeta A, Coto R, Villegas L. Medición de TSH, TA y FA en muestras de sangre de cordón umbilical en papel 14. de filtro: impacto en el tamisaje neonatal. Biomed Colombia. 2000;20:30-41.
Asociación Médica Mundial (AMM). Declaración de Helsinki. Principios éticos para las investigaciones con seres humanos. 15. 59a Asamblea General, Seúl, Corea, octubre de 2008 [en línea]. [Fecha de consulta: 20 de mayo de 2013]. Disponible en: http://www.wma.net/es/30publications/10policies/b3/index.html.
Molinero L. Elección de los puntos de corte para convertir una variable cuantitativa en cualitativa. Asociación de la Socie16. dad Española de Hipertensión, 2003.
Cerda J., Cifuentes L. Uso de curvas ROC en investigación clínica. Aspectos teórico-prácticos. Rev Chil Infect. 17. 2012;29(2):138-141. ISSN 0716-1018.
Martínez Reyes, L. Las hiperfenilalaninemias. Recomendaciones para el genetista clínico. Editorial Ciencias 18. Médicas;2006.
Belmont Martínez L., Fernández Lainez C., Ibarra González I., Guillén López S., Monroy Santoyo S., Vela Amieva M. 19. Evaluación bioquímica de la fenilcetonuria (PKU): del diagnóstico al tratamiento. Acta Pediatr Mex. 2012;33(6):296-300.
Vela Amieva M. Ibarra González I., Monroy Santoyo S., Fernández Laínez C., Guillén López S., et al. Modelo de aten20. ción inicial de la fenicetonuria y otras hiperfenilalaninemias en el Instituto Nacional de Pediatría. Acta Pediatr Mex. 2010;31(6):297-303.
Blau N., Spronsen FJ., Harvey LL.Phenylketonuria. The Lancet. 2010;9750 (376):1417-1427.21