2014, Number 2
<< Back Next >>
Arch Neurocien 2014; 19 (2)
Mutation status of the IT-15 (HTT) gene in ecuadorian families with Huntington’s disease
Pavón-Realpe VH, Jaramillo-Koupermann G, López-Cortés A, Domínguez EJP, Cusco CCD, Navarrete SDC, Paz-y-Miño C
Language: Spanish
References: 29
Page: 73-78
PDF size: 441.45 Kb.
ABSTRACT
Huntington disease (HD) is a progressive neurodegenerative disorder with an autosomal dominant inheritance that
affects 1 per 10.000 individuals. It is caused by the
IT-15 gene on chromosome 4p16.3 that has, in its first exon,
an unstable expansion of (CAG)
n trinucleotide which encodes a polyglutamine region in huntingtin; the expansion
promotes neurodegeneration. This first descriptive study was focused on evaluating the CAG trinucleotide expansion
in Ecuadorian affected individuals and their family members at risk in order to enclose the first approximation of the
disease status in Ecuador. Through PCR, nested PCR and automatic sequencing, we have genotyped 42 individuals
from nine Ecuadorian families clinically diagnosed with HD. Twenty-eight people tested positive for the mutation
with an average CAG number of the expanded allele of 57 ±7.9 (49-78), seven of which have not thus far presented
Chorea. The average repeats of the normal alleles were 24 ± 8.4 (15-28). Two individuals with 32 and 37 repeats
showed moderately expanded alleles while a single case was found to be de novo with 53 CAG. An inverse relationship
between the number of repeats and age of onset of symptoms was observed. Generational instability was transmitted
in 21.4% of the cases with notable instability in paternal inheritance in one case. Genetic diagnosis of the
IT-15
gene is extremely important, larger studies in different regions and ethnic groups are needed to better know the behavior of Huntington’s disease in Ecuador.
REFERENCES
Mirkin SM. Expandable DNA repeats and human disease. Nature 2007; 447:932-40.
Kirkwood SC, Su JL, Conneally P, Foroud T. Progression of symptoms in the early and middle stages of Huntington disease. Arch neurol 2001; 58:273-8.
Warby SC, Montpetit A, Hayden AR, Carroll JB, Butland SL, Visscher H, et al. CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am J Hum Genet 2009;84(3):351-66.
Mattson MP. Accomplices to neuronal death. Nature 2002; 415:377-79.
Angoa-Pérez M, Rivas-Arancibia S. Estrés oxidativo y neurodegeneración: ¿causa o consecuencia?. Arch Neurocien 2007;12(1):45-54.
Nance M, Paulsen JS. A Physician’s Guide to the Management of Huntington’s Disease. Third edition. USA: Huntington’s Disease Society of America, 2011.
Rosenblatt A, Kumar BV, Mo A, Welsh CS, Margolis RL, Ross CA. Age, CAG repeat length, and clinical progression in Huntington’s disease. Mov Disord 2012; 27(2):272-6.
Gudesblatt M, Tarsy D. Huntington’s disease/: a clinical review. Neurology Review 2011; Suplement:1-8.
Warby SC, Visscher H, Collins JA, Doty CN, Carter C, Butland SL, et al. IT-15 haplotypes contribute to dif ferences in Huntington disease prevalence between Europe and East Asia. Eur J Hum Genet 2011;19(5):561-6.
Yoon S-R, Dubeau L, de Young M, Wexler NS, Arnheim N. Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc Natl Acad Sci U S A 2003; 100(15):8834-8.
Lima E Silva TC, Serra HG, Ber tuzzo CS, Lopes-Cendes I. Molecular diagnosis of Huntington disease in Brazilian patients. Arq Neuropsiquiatr 2000;58(1):11-7.
Dorsey ER. Characterization of a large group of individuals with huntington disease and their relatives enrolled in the COHORT study. PloS One 2012;7(2):295-22.
Vásquez-Cerdas M, Morales-Montero F, Fernández-Morales H, el Valle-Carazo G, Fornaguera-Trías, J, Cuenca-Berger P. Diagnóstico molecular de la EH en Costa Rica.pdf. Acta Med Costarric 2008; 50(1):35-41.
Gatto E, Parisi V, Persi G, Converso DP, Etcheverry JL, Varela V, et al. Clinical and genetic characteristics in patients with Huntington’s Disease from Argentina. Parkinsonism Relat Disord 2012; 18(2):166-9.
Paradisi I, Hernández A, Arias S. Huntington disease mutation in Venezuela: age of onset, haplotype analyses and geographic aggregation. J Human Genet 2008;53(2):127-35.
Vázquez-Mojena Y, Laguna-Salvia L, Laf fita-Mesa JM, González-Zaldívar Y, Almaguer-Mederos LE, Rodríguez-Labrada R, et al. Genetic features of Huntington disease in Cuban 78 | Vol. 19 | No. 2 abril-junio 2014 | Arch Neurocien (Mex) INNN, 2014 Estado de la mutación del gen IT-15 (HTT) en familias ecuatorianas population: implications for phenotype, epidemiology and predictive testing. J Neurol Sci 2013; 335(1-2):101-4.
Peterlin B, Kobal J, Teran N, Flisar D, Lovreciæ L. Epidemiology of Huntington’s disease in Slovenia. Acta Neurol Scand 2009; 119(6):371-5.
Barron LH, Warner JP, Porteous M, Holloway S, Simpson S, Davidson R, et al. A study of the Huntington’s disease associated trinucleotide repeat in the Scottish population. J Med Genet 1993; 30(12):1003-7.
Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, et al. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 2012; 78(10):690-5.
De Rooij KE, De Koning Gans PA, Skraastad MI, Belfroid RD, Vegter-Van Der Vlis M, Roos RA, et al. Dynamic mutation in Dutch Huntington’s disease patients: increased paternal repeat instability extending to within the normal size range. J Med Genet 1993; 30(12):996-1002.
Nopoulos P, Epping E, Wassink T, Schlaggar BL, Perlmutter J. Correlation of CAG repeat length between the maternal and paternal allele of the Huntingtin gene: evidence for assortative mating. Behav Brain Funct 2011; 7(1):45.
Callahan JL, Andrews KJ, Zakian VA, Freudenreich CH. Mutations in Yeast Replication Proteins That Increase CAG / CTG Expansions Also Increase Repeat Fragility Mutations in Yeast Replication Proteins That Increase CAG / CTG Expansions Also Increase Repeat Fragility. Molecular and Cellular Biology 2003; 23(21):7849-60.
Kovtun I V, Liu Y, Bjoras M, Klungland A, Wilson SH, McMurray CT. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 2007; 447(7143):447-52.
Hendricks AE, Latourelle JC, Lunetta KL, Cupples LA. Estimating the probability of de novo HD cases from transmissions of expanded penetrant CAG alleles in the Huntington disease gene from male carriers of high normal alleles. Am J Hum Genet Part A 2010; 149(7):1375-81.
Quarrell OW, Rigby AS, Barron L, Crow Y, Dalton A, Dennis N, et al. Reduced penetrance alleles for Huntington’s disease: a multi-centre direct observational study. J Med Genet 2007; 44(3):e68.
Frank S. Tetrabenazine: the first approved drug for the treatment of chorea in US patients with Huntington disease. Neuropsychiatr Dis Treat 2010;6:657-65.
Huntington Study Group. Tetrabenazine as antichorea therapy in Huntington disease. Neurology 2006; 66(3):366-72.
Videnovic A. Treatment of huntington disease. Curr Treat Options Neurol 2013; 15(4):424-38.
Ministerio de Salud Pública del Ecuador. Novena Revisión del Cuadro Nacional de Medicamentos Básicos. Ediciones legales 2013; ACUERDO No. 00004288.