2010, Number 1
<< Back Next >>
Rev Cub Gen 2010; 4 (1)
Oxidative damage and antioxidant enzymes in blood of patients with Spinocerebellar Ataxia Type 2
Riverón FG, Martínez BO, Gutiérrez GR, Pandolfi BA, Pupo BJ, Pereira N, Velazquez PL
Language: English
References: 33
Page: 42-47
PDF size: 313.62 Kb.
ABSTRACT
Recent evidences suggest that increased oxidative damage
as well as deficits in antioxidants defense systems
could be related to the pathogenesis of some hereditary
ataxias. The aim of this study was to investigate
some redox status biomarkers in patient with spinocerebellar
ataxia type 2. Samples from 33 patients and 22
control subjects, from Holguín province, were used to
determined plasmatic levels of malondialdehyde and enzymatic
activities of Cu/Zn superoxide dismutase and
catalase by spectrophotometric methods. Besides, DNA
damage in peripheral blood cells was evaluated using the
Comet assay. Our results evidenced that oxidative damage
is higher in spinocerebellar ataxia type 2 Cuban patients
in comparison with the control group. In addition,
we found an increase of antioxidant activity of evaluated
enzymes in affected subjects. These findings suggest that
the systemic redox state is altered in patients with spinocerebellar
ataxia type 2.
REFERENCES
Novo E and Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis & Tissue Repair. 2008;1:5.
Barnham K, Masters C & Bush A. Neurodegenerative diseases and oxidative stress. Nature. 2004;3:205-12.
Bonnefont-Rousselot D, Lacomblez L, Jaudon M, Lepage S, Salachas F, Bensimon G, Bizard C, Doppler V, Delattre J, Meininger V. Blood oxidative stress in amyotrophic lateral sclerosis. J Neurol Sci. 2000;178(1):57-62.
Gilgun-Sherki Y, Melamed E & Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology. 2001;40:959-75.
Tozzi G, Nuccetelli M, Lo Bello M Bernardini S, Bellincampi L, Ballerini S, Gaeta LM et al. Antioxidant enzymes in blood of patients with Friedreich’s ataxia. Arch Dis Child. 2002;86(5):376-9.
Reichenbach J, Schubert R, Schindler D, Muller K, Bohles H, Zielen S. Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal. 2002;4(3):465-9.
Migliore L, Fontana I, Colognato R, Coppede F, Siciliano G, Murrib L. Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer’s disease and in other neurodegenerative diseases. Neurobiology Aging. 2005;26:587-95.
Migliore L, Petrozzi L, Lucetti C, Gambaccini G, Bernardini S, Scarpato R, Trippi F, Barale R, Frenzilli G, Rodilla V, Bonuccelli U. Oxidative damage and cytogenetic analysis in leukocytes of Parkinson’s disease patients. Neurology. 2002;58(12):1809-15.
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Dürr A, Didierjean O, Stevanin G, Agid Y, Brice A. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet. 1996;14:285-91.
Beuge JA & Aust SD. Microsomal lipids peroxidation. Methods Enzymol. 1978;52:302-10.
Marklund S & Marklund G. Involvement of superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469-74.
Aebi H. Catalase in vitro. Meth Enzymol. 1984;105:121.
Hartmann A, Agurell E, Beevers C, Brendler-Schwaab S, Burlinson B, Clay P, Collins A, Smith A. Speit G, et al. Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis. 2003;18:45-51.
Collins AR, Dobson VL, Dusinska M, Kennedy G, Stetina R. The comet assay: what can it really tell us?. Mutat Res. 1997;375:183-93.
Mates JM, Pérez-Gómez C, & Nuñez de Castro I. Antioxidant Enzymes and Human Diseases. Clinical Biochemistry. 1999;32(8):595-603.
Delgado R, García J.C, Marqués L, Martínez I, Rodríguez J, Sánchez GG, Santos N, Velázquez L. Estudio de algunos parámetros relacionados con el equilibrio redox en pacientes Atáxicos tipo SCA-2 de la Provincia de Holguín. Rev Cub Farmacol. 2002;36(2):50-2.
Bradley JL, Homayoun S, Hart PE, Schapira AH, Cooper JM. Role of oxidative damage in Friedreich’s ataxia. Neurochem Res. 2004;29(3):561-7.
Galbusera C, Facheris M, Magni F, Galimberti G, Sala G, Tremolada L, Isella V, et al. Increased susceptibility to plasma lipid peroxidation in Alzheimer disease patients. Curr Alzheimer Res. 2004;1(2):103-9.
Kawamoto EM, Munhoz CD, Glezer I, et al. Oxidative state in platelets and erythrocytes in aging and Alzheimer’s disease. Neurobiol Aging. 2005;26(6):857-64.
Bernabucci U, Ronchi B, Lacetera N, Nardone A. Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. Journal of Dairy Science. 2002;85(9):2173–79.
Sies H. Strategies of antioxidant defence. Eur J Biochem. 1993;215: 213-19.
Aksoy Y, Sanal O, Metin A, Tezcan I, Ersoy F, Ogus H, Ozer N. Antioxidant enzymes in red blood cells and lymphocytes of ataxia-telangiectasia patients. Turk J Pediatr. 2004;46(3):204-7.
Toscano A, Messina S, Campo GM, Di Leo R, Musumeci O, Rodolico C, Aguennouz M, Annesi G, Messina C, Vita G. Oxidative stress in myotonic dystrophy type 1. Free Radic Res. 2005;39(7):771-6.
Nakamura J, Asakura S, Hester S, de Murcia G, Caldecott KW & Swenberg JA. Quantitation of intracellular NADPH can monitor an imbalance of DNA single strand break repair in base excision repair deficient cells in real time. Nucleic Acids Research. 2003;31(17):e10.
Burney S, Niles JC, Dedon PC, Tannenbaum SR. DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite. Chem Res Toxicol. 1999;12:513-20.
Pool-Zobel BL, Abrahamse SL, Collins AR, Kark W, Gugler R, Oberreuther D, Gunther E, Treptow-van Lishaut S and Rechkemmer G. Analysis of DNA Strand Breaks, Oxidized Bases, and Glutathione S-Transferase P1 in Human Colon Cells from Biopsies. Cancer Epidemiology, Biomarkers & Prevention. 1999;8:609–14.
Esterbauer H, Eckl P, and Ortner A. Possible mutagens derived from lipids and lipid precursors. Mutat. Res. 1990;238:223-33.
Cooke MS, Evans MD, Dizdaroglu M & Lunec J. Oxidative DNA damage: mechanisms, mutation and disease. FASEB J. 2003;17:1195-1214.
Rotman G, Siloh Y. Ataxia-telangiectasia: is ATM a sensor of oxidative damage and stress?. Bioessays.1997;19:911-17.
Barlow C, Dennery PA, Shigenaga MK, et al. Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc Natl Acad Sci USA. 1999;96: 9915-19.
Rolig RL, McKinnon PJ. Linking DNA damage and neurodegeneration. Trends Neurosci. 2000;23:417-24.
Caldecott KW. DNA single-strand breaks and neurodegeneration. DNA Repair. 2004;3:875-82.
Teunissen CE, de Vente J, Steinbusch HW, De Bruijn C. Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging. 2002;23(4):485-508.