2003, Number 1
<< Back Next >>
Rev Acta Médica 2003; 11 (1)
Oxygen in cell bioenergetics
Morales CS
Language: Spanish
References: 16
Page:
PDF size: 59.59 Kb.
ABSTRACT
The current amount of oxygen in Earth’s atmosphere is the evolutionary result of a biophysiological and biochemical balances between oxygen-consuming animals and photosynthetically-producing plants. At the onset of life Earth’s atmosphere was devoid of oxygen, and thus was notably reductive.
Having this gas existed, the first molecules would have been destroyed as a result of oxidation. The incorporation of oxygen into the environment was slowly and progressive, and this event contributed to to the origin and development of life. Thus, the living organisms evolved from an anaerobic mode of respiration to an aerobic one, which allowed the synnthesis of a greater number of ATP molecules. Without this form of energy, no organic life would have been possible, wether be it plant, animal or human. The mere fact of being alive requires certain needs of energy (ergosy), which are characteristics of the life cycle’s organism. If these energy requirements are not properly satisfied, the risk of becoming sick within an specified period of time increases. Food support of the nutritional wellbeing is essential to life expectancy as well as to its quality. As disease increases the subject´s metabolic requeriments, proper feeding becomes a key element of every therapeutic procedure. Thus, the physician should be constantly alerted about an oxygen defficiency already established, or take actions for preventing it, always with the goal of favourably modifying the course of several diseases. In this regard, the role of Hyperbaric Oxygenation (HBO) shoul be considered. There are not doubt then that oxygen is a vital element. Should we then consider it as a nutrient?
REFERENCES
Oriani G, Marroni A, Wattel F. Manual de Medicina Hiperbárica. Instituto Ortopédico Galeazzi. Milán: 1995.
Priestley J. The discovery of oxygen (1775). Alembic Club Reprints No. 7. University of Chicago Press. Chicago: 1906.
Sienko MJ y Plane RA. Química. Edición Revolucionaria, La Habana. 1967.
Beddoes T, Watt J. Considerations of the medicinal use of factitious airs, and on the manner of obtaining them in large quantities. Decimoquinta Edición. Part II. Bristol: Bulgin and Rossier, 1794.
Bert P. La pression barometrique, recherches de physiologie experimental. Masson, Paris, 1877.
Smith U. The pathological effects due to increase of oxygen tension in the air breathed. J. Physiol. 1899.
Efuni, SN; Shpektor, VA. Gipoksicheskye sostoiania y ij klassifikatsis. (Estados hipóxicos y su clasificación). Anesteziologia y Reanimatologia 25(2): 3-12, URSS, 1981.
Karlson P, Pulido F. Manual de Bioquímica para Médicos, Naturalistas y Farmaceúticos. Editorial Marín, S. A. Barcelona, 1962.
Barreto Penié J. Programa de Intervención Alimentaria, Nutrimental y Metabólica del paciente hospitalizado. Rev Cubana Aliment Nutr 1999;13(2):137-44.
Santana Porbén S. Barreto Penié J, Martínez González C. Control y aseguramiento de la calidad de las medidas de intervención alimentaria y nutrimental. Rev Cubana Aliment Nutr 2000;14(2):141-9.
National Academy of Sciences. National Research Council. Publication No. 1298. Fundamentals of Hyperbaric Medicine. Washington DC. 1966.
Boerema I, Brummelkamp W H, and Meijne N G. Clinical application of Hyperbaric Oxygen. Elsevier Publishing Comp. First Edition. Amsterdam, 1964.
Kindwall E P. A History Hyperbaric Medicine. En: Hyperbaric Medicine Practice. Kundwall E P. Best Publishing Comp. 1 st . Ed. Flagstaff, Arizona, 1995.
Guyton AC. Tratado de Fisiología Médica. 7ma. Edición. Capítulos VII y VIII. Edición Revolucionaria, 1990.
Boerema I, Meijne N G, Brummelkamp W H, et al. Life without blood (A study of the influence of high atmospheric pressure and hypotermia on dilution the blood). J Cardiovasc Surg 1960.
Salinas, A. Papel biológico de los Radicales Libres. Medicina Subacuática e Hiperbárica. 3a. Edición. pág. 633-649. Instituto Social de la Marina, Madrid, España, l995.