2014, Number 2
<< Back Next >>
Investigación en Discapacidad 2014; 3 (2)
Genetic aspects of primary open-angle glaucoma in adults
Gálvez-Rosas A
Language: Spanish
References: 68
Page: 69-76
PDF size: 341.98 Kb.
ABSTRACT
Glaucoma is the second leading cause of visual impairment and blindness worldwide. The main type of glaucoma in many populations is the primary open-angle glaucoma (POAG); based on the age of onset, a kind of early-onset POAG can be distiguished, called juvenile primary open-angle glaucoma (JPOAG), which often shows a pattern of Mendelian inheritance. However, the most prevalent subtype is called adult-onset POAG, which in most cases displays a complex pattern of inheritance. In general, more than 15 genetic loci have been reported, but only five genes have been identified in these loci as a cause of glaucoma: myocilin (MYOC), optineurin (OPTN), WD repeat domain 36 (WDR36), cytochrome P450 1B1 (CYP1B1) and neurotrophin-4 (NTF4). However, the percentage of mutations in these genes in POAG patients is low; in some of these cases, a Mendelian inheritance pattern is observed, while in a sizeable fraction of cases the phenotypes result from the contribution of a large number of different variants of genes.
REFERENCES
Fan BJ, Wiggs JL. Glaucoma: genes, phenotypes, and new directions for therapy. J Clin Invest. 2010; 120 (9): 3064-3072.
Quigley HA. Glaucoma. Lancet. 2011; 377: 1367-1377.
Fuse N. Genetic bases for glaucoma. Tohoku J Exp Med. 2010; 221: 1-10.
Kwon YH, Fingert JH, Kuehn MH et al. Primary open-angle glaucoma. N Engl J Med. 2009; 360 (11): 1113-1124.
Ramakrishnan R, Khurana M. Surgical management of glaucoma: an Indian perspective. Indian J Ophthalmol. 2011; 59 (Suppl): S118-122.
Rose R, Karthikeyan M, Anandan B et al. Myocilin mutation among primary open angle glaucoma patients of Kanyakumari district, South India. Mol Vis. 2007; 13: 497-503.
López-López G, Gastélum-Guerrero J. Prevalencia de glaucoma primario en la coordinación universitaria del Hospital Civil de Culiacán en el periodo 2003-2005. Bol Med UAS. 2006; 12 (2): 12-15.
Gilbert-Lucido ME, García-Huerta M, Ruiz-Quintero N et al. Estudio epidemiológico de glaucoma en población mexicana. Rev Mex Oftalmol. 2010; 84 (2): 86-90.
Voleti VB, Hubschman JP. Age-related eye disease. Maturitas. 2013; 75 (1): 29-33.
Klein R, Klein BE. The prevalence of age-related eye diseases and visual impairment in aging: current estimates. Invest Ophthalmol Vis Sci. 2013; 54 (14): 5-13.
Kini MM, Leibowitz HM, Colton T et al. Prevalence of senile cataract, diabetic retinopathy, senile macular degeneration, and open-angle glaucoma in the Framingham Eye Study. Am J Ophthalmol. 1978; 85: 28-34.
Goel M, Picciani RG, Lee RK et al. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010; 3 (4): 52-59.
Sharts-Hopko NC, Glynn-Milley C. Primary open-angle glaucoma. Am J Nurs. 2009; 109 (2): 40-47.
Wolfs RC, Klaver CC, Ramrattan RS et al. Genetic risk of primary open-angle glaucoma. Arch Ophthalmol. 1998; 116: 1640-1645.
Fan BJ, Wang DY, Lam DS et al. Gene mapping for primary open angle glaucoma. Clin Biochem. 2006; 39 (3): 249-258.
Rao KN, Nagireddy S, Chakrabarti S. Complex genetic mechanisms in glaucoma: an overview. Indian J Ophthalmol. 2011; 59 (Suppl): S31-42.
Gadia R, Sihota R, Dada T et al. Current profile of secondary glaucomas. Indian J Ophthalmol. 2008; 56 (4): 285-289.
Khan AO. Genetics of primary glaucoma. Curr Opin Ophthalmol. 2011; 22 (5): 347-355.
Challa P. Genetics of adult glaucoma. Int Ophthalmol Clin. 2011; 51 (3): 37-51.
Allingham RR, Liu Y, Rhee DJ. The genetics of primary open-angle glaucoma: a review. Exp Eye Res. 2009; 88: 837-844.
Shields MB. Normal-tension glaucoma: is it different from primary open-angle glaucoma? Curr Opin Ophthalmol. 2008; 19 (2): 85-88.
Soliman Mahdy MA. Gene therapy in glaucoma-part I: Basic mechanisms and molecular genetics. Oman J Ophthalmol. 2010; 3 (1): 2-6.
Challa P. Glaucoma genetics. Int Ophthalmol Clin. 2008; 48 (4): 73-94.
Ray K, Mookherjee S. Molecular complexity of primary open angle glaucoma: current concepts. J Genet. 2009; 88: 451-467.
Liu Y, Allingham RR. Molecular genetics in glaucoma. Exp Eye Res. 2011; 93: 331-339.
Qu X, Zhou X, Zhou K et al. New mutation in the MYOC gene and its association with primary open-angle glaucoma in a Chinese family. Mol Biol Rep. 2010; 37: 255-261.
Mengkegale M, Fuse N, Miyazawa A et al. Presence of myocilin sequence variants in Japanese patients with open-angle glaucoma. Mol Vis. 2008; 14: 413-417.
Xiao Z, Meng Q, Tsai JC et al. A novel optineurin genetic mutation associated with open-angle glaucoma in a chinese family. Mol Vis. 2009; 15: 1649-1654.
Miyazawa A, Fuse N, Mengkegale M et al. Association between primary open-angle glaucoma and WDR36 DNA sequence variants in Japanese. Mol Vis. 2007; 13: 1912-1919.
Burdon KP, Hewitt AW, Mackey DA et al. Tag SNPs detect association of the CYP1B1 gene with primary open angle glaucoma. Mol Vis. 2010; 16: 2286-2293.
Vithana EN, Nongpiur ME, Venkataraman D et al. Identification of a novel mutation in the NTF4 gene that causes primary open-angle glaucoma in a Chinese population. Mol Vis. 2010; 16: 1640-1645.
Chen LJ, Ng TK, Fan AH et al. Evaluation of NTF-4 as a causative gene for primary open-angle glaucoma. Mol Vis. 2012; 18: 1763-1772.
Ricard CS, Tamm ER. Focus on molecules: myocilin/TIGR. Exp Eye Res. 2005; 81 (5): 501-502.
Tomarev SI, Nakaya N. Olfactomedin domain-containing proteins: posible mechanisms of action and functions in normal development and pathology. Mol Neurobiol. 2009; 40(2): 122-138.
Kanagavalli J, Pandaranayaka E, Krishnadas SR et al. A review of genetic and structural understanding of the role of myocilin in primary open angle glaucoma. Indian J Ophthalmol. 2004; 52 (4): 271-280.
Xie X, Zhou X, Qu X et al. Two novel myocilin mutations in a Chinese family with primary open-angle glaucoma. Mol Vis. 2008; 14: 1666-1672.
Menaa F, Braghini CA, Vasconcellos JP et al. Keeping an eye on myocilin: a complex molecule associated with primary open-angle glaucoma susceptibility. Molecules. 2011; 16: 5402-5421.
López-Martínez F, López-Garrido MP, Sánchez-Sánchez F et al. Role of MYOC and OPTN sequence variations in Spanish patients with primary open-angle glaucoma. Mol Vis. 2007; 13: 862-872.
Chalasani ML, Balasubramanian D, Swarup G. Focus on molecules: optineurin. Exp Eye Res. 2008; 87 (1): 1-2.
Chalasani ML, Swarup G, Balasubramanian D. Optineurin and its mutants: molecules associated with some forms of glaucoma. Ophthalmic Res. 2009; 42: 176-184.
Park BC, Tibudan M, Samaraweera M et al. Interaction between two glaucoma genes, optineurin and myocilin. Genes Cells. 2007; 12 (8): 969-979.
Sripriya S, Nirmaladevi J, George R et al. OPTN gene: profile of patients with glaucoma from India. Mol Vis. 2006; 12: 816-820.
Fuse N, Takahashi K, Akiyama H et al. Molecular genetic analysis of optineurin gene for primary open-angle and normal tension glaucoma in the Japanese population. J Glaucoma. 2004; 13: 299-303.
Chalasani ML, Balasubramanian D, Swarup G. Focus on molecules: Optineurin. Exp Eye Res. 2008; 87 (1): 1-2.
Chalasani ML, Radha V, Gupta V et al. A glaucoma-associated mutant of optineurin selectively induces death of retinal ganglion cells which is inhibited by antioxidants. Invest Ophthalmol Vis Sci. 2007; 48: 1607-1614.
Sudhakar C, Nagabhushana A, Jain N et al. NF-kappaB mediates tumor necrosis factor alpha-induced expression of optineurin, a negative regulator of NF-kappaB. PLoS One. 2009; 4: e5114.
Hauser MA, Allingham RR, Linkroum K et al. Distribution of WDR36 DNAsequence variants in patients with primary open-angle glaucoma. Invest Opthalmol Vis Sci. 2006; 47 (6): 2542-2546.
Fan BJ, Wang DY, Cheng CY et al. Different WDR36 mutation pattern IN Chinese patients with primary open-angle glaucoma. Mol Vis. 2009; 15: 646-653.
Hewitt AW, Dimasi DP, Mackey DA et al. A glaucoma case-control study of the WDR36 gen D658G sequence variant. Am J Ophtalmol. 2006; 142 (2): 324-325.
Skarie JM, Link BA. The primary open-angle glaucoma gene WDR36 functions in ribosomal RNA processing and interacts with the p53 stress-response pathway. Hum Mol Genet. 2008; 17: 2474-2485.
Messina-Baas OM, González-Huerta LM, Chima-Galán C et al. Molecular analysis of the CYP1B1 gene: identification of novel truncating mutations in patients with primary congenital glaucoma. Ophthalmic Res. 2007; 39 (1): 17-23.
Stoilov I, Akarsu AN, Alozie I et al. Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutation disrupting either the hinge region or the conserved core structure of cytochrome P450 1B1. Am J Hum Genet. 1998; 62 (3): 573-584.
Vincent AL, Billingsley G, Buys Y et al. Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet. 2002; 70: 448-460.
Vasiliou V, Gonzalez FJ. Role of CYP1B1 in glaucoma. Annu Rev Pharmacol Toxicol. 2008; 48: 333-350.
Ip NY, Ibañez CF, Nye SH et al. Mammalian neurotrophin-4: Structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci USA. 1992; 89 (7): 3060-3064.
Liu Y, Liu W, Crooks K et al. No evidence of association of heterozygous NTF-4 mutations in patients with primary open-angle glaucoma. Am J Hum Genet. 2010; 86: 498-499.
Pasutto F, Matsumoto T, Mardin ChY et al. Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma. Am J Hum Genet. 2009; 85 (4): 447-456.
Rao KN, Kaur I, Parikh RS et al. Variations in NTF-4, VAV2, and VAV3 genes are not involved with primary open angle and primary angle closure glaucomas in an Indian population. Invest Ophthalmol Vis Sci. 2010; 51 (10): 4937-4941.
Cheng L, Sapieha P, Kittlerova P et al. TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J Neurosci. 2002; 22: 3977-3986.
Berkemeier LR, Winslow JW, Kaplan DR et al. Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron. 1991; 7: 857-866.
Burdon KP. Genome-wide association studies in the hunt for genes causing primary open-angle glaucoma: a review. Clin Experiment Ophthalmol. 2012; 40 (4): 358-363.
Thorleifsson G, Magnuson KP, Sulem P et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007; 317: 1397-1400.
Nakano M, Ikeda Y, Taniguchi T et al. Three susceptible loci asociated with primary open-angle glaucoma identified by genome-wide association study in a Japanese population. Proc Natl Acad Sci USA. 2009; 106: 12838-12842.
Fan BJ, Liu K, Wang DY et al. Association of polymorphisms of tumor necrosis factor and tumor protein p53 with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2010; 51: 4110-4116.
Wiggs JL, Kang JH, Yaspan BL et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum Mol Genet. 2011; 20 (23): 4707-4713.
Osman W, Low SK, Takahashi A et al. A genome-wide association study in the Japanese population confirms 9p21 and 14q23 as susceptibility loci for primary open angle glaucoma. Hum Mol Genet. 2012; 21 (12): 2836-2842.
Blue Mountains Eye Study (BMES), Wellcome Trust Case Control Consortium 2 (WTCCC2). Genome-wide association study of intraocular pressure identifies the GLCCI1/ICA1 region as a glaucoma susceptibility locus. Hum Mol Genet. 2013; 22 (22): 4653-4660.
Nag A, Venturini C, Small KS et al. A genome-wide association study of intra-ocular pressure suggests a novel association in the gene FAM125B in the TwinsUK cohort. Hum Mol Genet. 2014; 23 (12): 3343-3348.